Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022102162> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2022102162 endingPage "44" @default.
- W2022102162 startingPage "43" @default.
- W2022102162 abstract "The Quantum Monte Carlo Diagonalization (QMCD) method which is heart of the MCSM, has a peculiar characteristic as converting the original large matrix into a small one giving nearly equal eigenvalues by means of transforming basis vectors, as mentioned by another paper on this proceedings. 1) In the QMCD, most important basis vectors of the many-body Hilbert space are searched in a stochastic way, and the Hamiltonian is diagonalized with respect to those basis vectors. Certainly, it takes almost all cpu time to calculate each Hamiltonian matrix element with many trial basis vectors to find out the (nearly) best transformation. This characteristic is suitable to implement on parallel calculation with using many CPUs, especially on loosely coupled system because of the calculation of each matrix element can be divided into individual segments not talking among themselves. We decided to make such a computer system as known as “cluster” or “farm” by ourselves because in absence of the computer system which realize such simple parallelism in the market. Every parallel computer in the market is so sophisticate, that is, too expensive for our purpose. Performance of floating point calculation is also so crucial. Vector CPUs, state of the art architecture for fastest floating point calculation, are however not suitable for our calculation which does not treat vector long enough for the CPUs. We chose the Alpha 21264 which has highest performance of the floating point calculation (58.7 SPECfp95 at 500 MHz) as scaler CPU about 4 times better than most popular CPU in the commodity market. The workstation farm that we have built is named “Alphleet”, which consists of many “Alpha” CPUs like as a “Fleet”. Figure 1 shows a schematic diagram and an actual photo (half nodes) of the Alphleet. It consists of a server and 70 clients. It is our goal of the system to maximize performance for the MCSM calculation and to minimize management task. The latter means that easy management against such a large scale system is another big issue for non-professionals of computer itself" @default.
- W2022102162 created "2016-06-24" @default.
- W2022102162 creator A5000085228 @default.
- W2022102162 creator A5007373986 @default.
- W2022102162 creator A5031223054 @default.
- W2022102162 creator A5036770921 @default.
- W2022102162 creator A5040496109 @default.
- W2022102162 creator A5072532525 @default.
- W2022102162 creator A5083172827 @default.
- W2022102162 creator A5086258210 @default.
- W2022102162 date "2000-01-01" @default.
- W2022102162 modified "2023-10-03" @default.
- W2022102162 title "A Workstation Farm Optimized for Monte Carlo Shell Model Calculations : Alphleet" @default.
- W2022102162 doi "https://doi.org/10.1143/ptps.138.43" @default.
- W2022102162 hasPublicationYear "2000" @default.
- W2022102162 type Work @default.
- W2022102162 sameAs 2022102162 @default.
- W2022102162 citedByCount "1" @default.
- W2022102162 countsByYear W20221021622013 @default.
- W2022102162 crossrefType "journal-article" @default.
- W2022102162 hasAuthorship W2022102162A5000085228 @default.
- W2022102162 hasAuthorship W2022102162A5007373986 @default.
- W2022102162 hasAuthorship W2022102162A5031223054 @default.
- W2022102162 hasAuthorship W2022102162A5036770921 @default.
- W2022102162 hasAuthorship W2022102162A5040496109 @default.
- W2022102162 hasAuthorship W2022102162A5072532525 @default.
- W2022102162 hasAuthorship W2022102162A5083172827 @default.
- W2022102162 hasAuthorship W2022102162A5086258210 @default.
- W2022102162 hasBestOaLocation W20221021621 @default.
- W2022102162 hasConcept C105795698 @default.
- W2022102162 hasConcept C111919701 @default.
- W2022102162 hasConcept C121332964 @default.
- W2022102162 hasConcept C121864883 @default.
- W2022102162 hasConcept C122592724 @default.
- W2022102162 hasConcept C127413603 @default.
- W2022102162 hasConcept C19499675 @default.
- W2022102162 hasConcept C2781052500 @default.
- W2022102162 hasConcept C33923547 @default.
- W2022102162 hasConcept C41008148 @default.
- W2022102162 hasConcept C459310 @default.
- W2022102162 hasConcept C67953723 @default.
- W2022102162 hasConcept C78519656 @default.
- W2022102162 hasConceptScore W2022102162C105795698 @default.
- W2022102162 hasConceptScore W2022102162C111919701 @default.
- W2022102162 hasConceptScore W2022102162C121332964 @default.
- W2022102162 hasConceptScore W2022102162C121864883 @default.
- W2022102162 hasConceptScore W2022102162C122592724 @default.
- W2022102162 hasConceptScore W2022102162C127413603 @default.
- W2022102162 hasConceptScore W2022102162C19499675 @default.
- W2022102162 hasConceptScore W2022102162C2781052500 @default.
- W2022102162 hasConceptScore W2022102162C33923547 @default.
- W2022102162 hasConceptScore W2022102162C41008148 @default.
- W2022102162 hasConceptScore W2022102162C459310 @default.
- W2022102162 hasConceptScore W2022102162C67953723 @default.
- W2022102162 hasConceptScore W2022102162C78519656 @default.
- W2022102162 hasLocation W20221021621 @default.
- W2022102162 hasOpenAccess W2022102162 @default.
- W2022102162 hasPrimaryLocation W20221021621 @default.
- W2022102162 hasRelatedWork W1677041642 @default.
- W2022102162 hasRelatedWork W1814245173 @default.
- W2022102162 hasRelatedWork W1981488216 @default.
- W2022102162 hasRelatedWork W1984372510 @default.
- W2022102162 hasRelatedWork W2005266888 @default.
- W2022102162 hasRelatedWork W2063812126 @default.
- W2022102162 hasRelatedWork W2102423997 @default.
- W2022102162 hasRelatedWork W2504969732 @default.
- W2022102162 hasRelatedWork W2804223419 @default.
- W2022102162 hasRelatedWork W78272879 @default.
- W2022102162 hasVolume "138" @default.
- W2022102162 isParatext "false" @default.
- W2022102162 isRetracted "false" @default.
- W2022102162 magId "2022102162" @default.
- W2022102162 workType "article" @default.