Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022121570> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2022121570 endingPage "326" @default.
- W2022121570 startingPage "320" @default.
- W2022121570 abstract "A method for the separation of additive spectra of complex mixtures is developed on the basis of a linear algebra technique and nonlinear optimization algorithms. It is shown to be possible, under certain conditions, to uniquely separate a set of complex spectral curves consisting of the same components, but with different proportions, into the unknown spectra of the pure constituents and to give their respective relative concentrations. The method proposed is a variant of the self-modeling curve-resolution approach based on the singular value decomposition of the data matrix formed by the set of digitized spectra of mixtures. The spectra of components are calculated as linear combinations of left-side singular vectors of the data matrix provided that both individual spectra and their concentrations are nonnegative and the shapes of the spectra are as dissimilar as possible. The technique provides a unique decomposition if each fundamental spectrum has at least one wavelength with zero intensity and the other pure spectra are nonzero at this wavelength. The algorithm is evaluated on an artificial data set to clearly demonstrate the method. The approach described in this paper may be applied to any experiment whose outcome is a continuous curve y( x) that is a sum of unknown, nonnegative, linearly independent functions." @default.
- W2022121570 created "2016-06-24" @default.
- W2022121570 creator A5041660103 @default.
- W2022121570 date "1996-03-01" @default.
- W2022121570 modified "2023-09-27" @default.
- W2022121570 title "Separation of Additive Mixture Spectra by a Self-Modeling Method" @default.
- W2022121570 cites W1972326413 @default.
- W2022121570 cites W1978788494 @default.
- W2022121570 cites W1986673878 @default.
- W2022121570 cites W1987524861 @default.
- W2022121570 cites W2007697243 @default.
- W2022121570 cites W2022119055 @default.
- W2022121570 cites W2031432050 @default.
- W2022121570 cites W2044481145 @default.
- W2022121570 cites W2047662979 @default.
- W2022121570 cites W2058029301 @default.
- W2022121570 cites W2071585222 @default.
- W2022121570 cites W2080849564 @default.
- W2022121570 cites W2089529724 @default.
- W2022121570 cites W2093717911 @default.
- W2022121570 cites W2463852744 @default.
- W2022121570 cites W4213114446 @default.
- W2022121570 cites W4236009650 @default.
- W2022121570 cites W4256100460 @default.
- W2022121570 doi "https://doi.org/10.1366/0003702963906357" @default.
- W2022121570 hasPublicationYear "1996" @default.
- W2022121570 type Work @default.
- W2022121570 sameAs 2022121570 @default.
- W2022121570 citedByCount "16" @default.
- W2022121570 countsByYear W20221215702019 @default.
- W2022121570 countsByYear W20221215702020 @default.
- W2022121570 countsByYear W20221215702022 @default.
- W2022121570 crossrefType "journal-article" @default.
- W2022121570 hasAuthorship W2022121570A5041660103 @default.
- W2022121570 hasConcept C106487976 @default.
- W2022121570 hasConcept C11413529 @default.
- W2022121570 hasConcept C120665830 @default.
- W2022121570 hasConcept C121332964 @default.
- W2022121570 hasConcept C134306372 @default.
- W2022121570 hasConcept C138268822 @default.
- W2022121570 hasConcept C154945302 @default.
- W2022121570 hasConcept C156778621 @default.
- W2022121570 hasConcept C158622935 @default.
- W2022121570 hasConcept C177264268 @default.
- W2022121570 hasConcept C185592680 @default.
- W2022121570 hasConcept C199360897 @default.
- W2022121570 hasConcept C22789450 @default.
- W2022121570 hasConcept C33923547 @default.
- W2022121570 hasConcept C41008148 @default.
- W2022121570 hasConcept C43617362 @default.
- W2022121570 hasConcept C4839761 @default.
- W2022121570 hasConcept C62520636 @default.
- W2022121570 hasConcept C6260449 @default.
- W2022121570 hasConceptScore W2022121570C106487976 @default.
- W2022121570 hasConceptScore W2022121570C11413529 @default.
- W2022121570 hasConceptScore W2022121570C120665830 @default.
- W2022121570 hasConceptScore W2022121570C121332964 @default.
- W2022121570 hasConceptScore W2022121570C134306372 @default.
- W2022121570 hasConceptScore W2022121570C138268822 @default.
- W2022121570 hasConceptScore W2022121570C154945302 @default.
- W2022121570 hasConceptScore W2022121570C156778621 @default.
- W2022121570 hasConceptScore W2022121570C158622935 @default.
- W2022121570 hasConceptScore W2022121570C177264268 @default.
- W2022121570 hasConceptScore W2022121570C185592680 @default.
- W2022121570 hasConceptScore W2022121570C199360897 @default.
- W2022121570 hasConceptScore W2022121570C22789450 @default.
- W2022121570 hasConceptScore W2022121570C33923547 @default.
- W2022121570 hasConceptScore W2022121570C41008148 @default.
- W2022121570 hasConceptScore W2022121570C43617362 @default.
- W2022121570 hasConceptScore W2022121570C4839761 @default.
- W2022121570 hasConceptScore W2022121570C62520636 @default.
- W2022121570 hasConceptScore W2022121570C6260449 @default.
- W2022121570 hasIssue "3" @default.
- W2022121570 hasLocation W20221215701 @default.
- W2022121570 hasOpenAccess W2022121570 @default.
- W2022121570 hasPrimaryLocation W20221215701 @default.
- W2022121570 hasRelatedWork W1988466901 @default.
- W2022121570 hasRelatedWork W1990477727 @default.
- W2022121570 hasRelatedWork W1995629062 @default.
- W2022121570 hasRelatedWork W2043494397 @default.
- W2022121570 hasRelatedWork W2051536702 @default.
- W2022121570 hasRelatedWork W2106884100 @default.
- W2022121570 hasRelatedWork W2159964792 @default.
- W2022121570 hasRelatedWork W2325953811 @default.
- W2022121570 hasRelatedWork W2951171815 @default.
- W2022121570 hasRelatedWork W4210385964 @default.
- W2022121570 hasVolume "50" @default.
- W2022121570 isParatext "false" @default.
- W2022121570 isRetracted "false" @default.
- W2022121570 magId "2022121570" @default.
- W2022121570 workType "article" @default.