Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022124510> ?p ?o ?g. }
- W2022124510 abstract "PreviousNext No AccessUnconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013Novel Approaches for the Simulation of Unconventional ReservoirsAuthors: Bicheng YanJohn E. KilloughYuhe WangYang CaoBicheng YanTexas A&M UniversitySearch for more papers by this author, John E. KilloughTexas A&M UniversitySearch for more papers by this author, Yuhe WangTexas A&M UniversitySearch for more papers by this author, and Yang CaoTexas A&M UniversitySearch for more papers by this authorhttps://doi.org/10.1190/urtec2013-131 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract URTeC 1581172 The development of shale plays in North America has achieved great success in satisfying increased energy demand. With the advances in experimental approaches, investigation of microstructures in organic-rich shale has identified several different pore types and the abundance of pores from the nanometer to the micron scale. Yet current modeling work for such reservoirs is mainly performed with dual porosity models based on Darcy’s law. In addition, a great discrepancy between simulation results and production data persists. Because flow regimes in porous media are quite sensitive to pore size, the flow mechanisms in shale reservoirs are considerably more complex than Darcy flow and the feasibility of conventional models has been frequently challenged. This work presents an integration of realistic multi-porosity and multi-mechanistic treatments to resolve the conundrum of fluid flow in shale. Based on a unique reservoir simulator, a micro-scale multiple-porosity model for gas flow in shale reservoirs is presented in this paper. The model consists of three separate porosity systems: kerogen, inorganic minerals, and natural fractures. Inorganic and organic portions of the shale matrix are represented by sub-continua with different characteristics considering pore structures, fluid storage and flow mechanisms. In the kerogen gas desorption, diffusion and Darcy flow occur simultaneously. Through considering the different pore families in the kerogen, the effects of nanopores and microporosity are incorporated into the model. In addition, a novel gridding scheme has been specially designed to recognize the complex structures. To accomplish this, the grid incorporates randomly distributed kerogen in the shale matrix and different continua are tied to each other via arbitrary connectivities. Through changing the properties of both matrix and fracture, a unified concept of dynamic apparent permeability of shale matrix is proposed. The derived concept allows the design and function of the Micro-Scale Model to be extended to the reservoir scale model containing hydraulic fractures. The more realistic gas production forecasts using the workflow presented in this paper indicate significant differences from that of conventional models. The ability to more accurately simulate the complex flow mechanisms using the proposed techniques will allow operators to better predict and enhance ultimate recovery from shale reservoirs. Keywords: North America, unconventional, porosity, fluid, gas, fractures, modeling, permeabilityPermalink: https://doi.org/10.1190/urtec2013-131FiguresReferencesRelatedDetailsCited ByEffect of Nanoscale Pore-Size Distribution on Fluid Phase Behavior of Gas-Improved Oil Recovery in Shale Reservoirs13 March 2020 | SPE Journal, Vol. 25, No. 03Seismic, geologic, geomechanics, and dynamic constraints in flow models of unconventional fractured reservoirs: Example from a south Texas fieldThe Leading Edge, Vol. 38, No. 2Grid-Sensitivity Analysis and Comparison Between Unstructured Perpendicular Bisector and Structured Tartan/Local-Grid-Refinement Grids for Hydraulically Fractured Horizontal Wells in Eagle Ford Formation With Complicated Natural Fractures15 July 2016 | SPE Journal, Vol. 21, No. 06A Utility Discrete Fracture Network Model for Field-Scale Simulation of Naturally Fractured Shale Reservoirs1 June 2016Fractured Shale Gas Reservoir Development Evaluation Based on Discrete Fracture Model25 April 2016Modelling Shale Gas Flow Using the Idea of Apparent Dynamic Permeability7 November 2016Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically Fractured Wells: Field-Case Studies and Numerical Simulations22 December 2015 | Journal of Canadian Petroleum Technology, Vol. 54, No. 06Modeling of Magnetic Nanoparticle Transport in Shale Reservoirs23 February 2015Sensitivity Analysis of Unstructured Meshing Parameters on Production Forecast of Hydraulically Fractured Horizontal Wells9 November 2015The Consideration of Pore Size Distribution in Organic-Rich Unconventional Formations May Increase Oil Production and Reserve by 25%, Eagle Ford Case Study4 August 2015Three-Phase Flow Simulation in Ultra-Low Permeability Organic Shale via a Multiple Permeability ApproachM. Alfi*, B. Yan, Y. Cao, C. An, Y. Wang, and J.E. Killough24 September 2014 Unconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013ISSN (online):2159-6832Copyright: 2013 Pages: 1229 publication data© 2013 Published in electronic format with permission by the Society of Exploration Geophysicists, American Association of Petroleum Geologists, and Society of Petroleum EngineersPublisher:Unconventional Resources Technology ConferenceSociety of Exploration Geophysicists HistoryPublished: 26 Sep 2013 CITATION INFORMATION Bicheng Yan, John E. Killough, Yuhe Wang, and Yang Cao, (2013), Novel Approaches for the Simulation of Unconventional Reservoirs, SEG Global Meeting Abstracts : 1304-1313. https://doi.org/10.1190/urtec2013-131 Plain-Language Summary KeywordsNorth AmericaunconventionalporosityfluidgasfracturesmodelingpermeabilityPDF DownloadLoading ..." @default.
- W2022124510 created "2016-06-24" @default.
- W2022124510 creator A5003688630 @default.
- W2022124510 creator A5025825940 @default.
- W2022124510 creator A5058196150 @default.
- W2022124510 creator A5081032657 @default.
- W2022124510 date "2013-08-14" @default.
- W2022124510 modified "2023-10-18" @default.
- W2022124510 title "Novel Approaches for the Simulation of Unconventional Reservoirs" @default.
- W2022124510 cites W1983991449 @default.
- W2022124510 cites W1994337653 @default.
- W2022124510 cites W2140460370 @default.
- W2022124510 cites W2155051757 @default.
- W2022124510 cites W2156007437 @default.
- W2022124510 cites W2283756289 @default.
- W2022124510 doi "https://doi.org/10.1190/urtec2013-131" @default.
- W2022124510 hasPublicationYear "2013" @default.
- W2022124510 type Work @default.
- W2022124510 sameAs 2022124510 @default.
- W2022124510 citedByCount "12" @default.
- W2022124510 countsByYear W20221245102013 @default.
- W2022124510 countsByYear W20221245102014 @default.
- W2022124510 countsByYear W20221245102015 @default.
- W2022124510 countsByYear W20221245102016 @default.
- W2022124510 countsByYear W20221245102019 @default.
- W2022124510 countsByYear W20221245102020 @default.
- W2022124510 countsByYear W20221245102022 @default.
- W2022124510 crossrefType "proceedings-article" @default.
- W2022124510 hasAuthorship W2022124510A5003688630 @default.
- W2022124510 hasAuthorship W2022124510A5025825940 @default.
- W2022124510 hasAuthorship W2022124510A5058196150 @default.
- W2022124510 hasAuthorship W2022124510A5081032657 @default.
- W2022124510 hasConcept C105569014 @default.
- W2022124510 hasConcept C109007969 @default.
- W2022124510 hasConcept C114793014 @default.
- W2022124510 hasConcept C121332964 @default.
- W2022124510 hasConcept C124952713 @default.
- W2022124510 hasConcept C126559015 @default.
- W2022124510 hasConcept C127313418 @default.
- W2022124510 hasConcept C127413603 @default.
- W2022124510 hasConcept C142362112 @default.
- W2022124510 hasConcept C151730666 @default.
- W2022124510 hasConcept C153127940 @default.
- W2022124510 hasConcept C183447037 @default.
- W2022124510 hasConcept C187320778 @default.
- W2022124510 hasConcept C18762648 @default.
- W2022124510 hasConcept C2778668878 @default.
- W2022124510 hasConcept C2778755073 @default.
- W2022124510 hasConcept C2779196632 @default.
- W2022124510 hasConcept C2780980858 @default.
- W2022124510 hasConcept C2993020645 @default.
- W2022124510 hasConcept C38349280 @default.
- W2022124510 hasConcept C41008148 @default.
- W2022124510 hasConcept C57879066 @default.
- W2022124510 hasConcept C62520636 @default.
- W2022124510 hasConcept C6648577 @default.
- W2022124510 hasConcept C78519656 @default.
- W2022124510 hasConcept C78762247 @default.
- W2022124510 hasConceptScore W2022124510C105569014 @default.
- W2022124510 hasConceptScore W2022124510C109007969 @default.
- W2022124510 hasConceptScore W2022124510C114793014 @default.
- W2022124510 hasConceptScore W2022124510C121332964 @default.
- W2022124510 hasConceptScore W2022124510C124952713 @default.
- W2022124510 hasConceptScore W2022124510C126559015 @default.
- W2022124510 hasConceptScore W2022124510C127313418 @default.
- W2022124510 hasConceptScore W2022124510C127413603 @default.
- W2022124510 hasConceptScore W2022124510C142362112 @default.
- W2022124510 hasConceptScore W2022124510C151730666 @default.
- W2022124510 hasConceptScore W2022124510C153127940 @default.
- W2022124510 hasConceptScore W2022124510C183447037 @default.
- W2022124510 hasConceptScore W2022124510C187320778 @default.
- W2022124510 hasConceptScore W2022124510C18762648 @default.
- W2022124510 hasConceptScore W2022124510C2778668878 @default.
- W2022124510 hasConceptScore W2022124510C2778755073 @default.
- W2022124510 hasConceptScore W2022124510C2779196632 @default.
- W2022124510 hasConceptScore W2022124510C2780980858 @default.
- W2022124510 hasConceptScore W2022124510C2993020645 @default.
- W2022124510 hasConceptScore W2022124510C38349280 @default.
- W2022124510 hasConceptScore W2022124510C41008148 @default.
- W2022124510 hasConceptScore W2022124510C57879066 @default.
- W2022124510 hasConceptScore W2022124510C62520636 @default.
- W2022124510 hasConceptScore W2022124510C6648577 @default.
- W2022124510 hasConceptScore W2022124510C78519656 @default.
- W2022124510 hasConceptScore W2022124510C78762247 @default.
- W2022124510 hasLocation W20221245101 @default.
- W2022124510 hasOpenAccess W2022124510 @default.
- W2022124510 hasPrimaryLocation W20221245101 @default.
- W2022124510 hasRelatedWork W1967224471 @default.
- W2022124510 hasRelatedWork W2032411788 @default.
- W2022124510 hasRelatedWork W2120051998 @default.
- W2022124510 hasRelatedWork W2321881008 @default.
- W2022124510 hasRelatedWork W2383345710 @default.
- W2022124510 hasRelatedWork W2637007088 @default.
- W2022124510 hasRelatedWork W2789463519 @default.
- W2022124510 hasRelatedWork W4224009151 @default.
- W2022124510 hasRelatedWork W4297348463 @default.
- W2022124510 hasRelatedWork W4323967745 @default.
- W2022124510 isParatext "false" @default.
- W2022124510 isRetracted "false" @default.
- W2022124510 magId "2022124510" @default.