Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022125877> ?p ?o ?g. }
- W2022125877 endingPage "288" @default.
- W2022125877 startingPage "263" @default.
- W2022125877 abstract "Abstract A numerical method that employs a combination of contour advection and pseudo-spectral techniques is used to simulate shear-induced instabilities in an internal solitary wave (ISW). A three-layer configuration for the background stratification, in which a linearly stratified intermediate layer is sandwiched between two homogeneous ones, is considered throughout. The flow is assumed to satisfy the inviscid, incompressible, Oberbeck–Boussinesq equations in two dimensions. Simulations are initialized by fully nonlinear, steady-state, ISWs. The results of the simulations show that the instability takes place in the pycnocline and manifests itself as Kelvin–Helmholtz billows. The billows form near the trough of the wave, subsequently grow and disturb the tail. Both the critical Richardson number ( ${mathit{Ri}}_{c} $ ) and the critical amplitude required for instability are found to be functions of the ratio of the undisturbed layer thicknesses. It is shown, therefore, that the constant, critical bound for instability in ISWs given in Barad & Fringer ( J. Fluid Mech. , vol. 644, 2010, pp. 61–95), namely ${mathit{Ri}}_{c} = 0. 1pm 0. 01$ , is not a sufficient condition for instability. It is also shown that the critical value of ${L}_{x} / lambda $ required for instability, where ${L}_{x} $ is the length of the region in a wave in which $mathit{Ri}lt 1/ 4$ and $lambda $ is the half-width of the wave, is sensitive to the ratio of the layer thicknesses. Similarly, a linear stability analysis reveals that ${bar {sigma } }_{i} {T}_{w} $ (where ${bar {sigma } }_{i} $ is the growth rate of the instability averaged over ${T}_{w} $ , the period in which parcels of fluid are subjected to $mathit{Ri}lt 1/ 4$ ) is very sensitive to the transition between the undisturbed pycnocline and the homogeneous layers, and the amplitude of the wave. Therefore, the alternative tests for instability presented in Fructus et al. ( J. Fluid Mech. , vol. 620, 2009, pp. 1–29) and Barad & Fringer ( J. Fluid Mech. , vol. 644, 2010, pp. 61–95), respectively, namely ${L}_{x} / lambda geq 0. 86$ and ${bar {sigma } }_{i} {T}_{w} gt 5$ , are shown to be valid only for a limited parameter range." @default.
- W2022125877 created "2016-06-24" @default.
- W2022125877 creator A5053585039 @default.
- W2022125877 creator A5074427505 @default.
- W2022125877 creator A5086096760 @default.
- W2022125877 date "2011-08-22" @default.
- W2022125877 modified "2023-10-16" @default.
- W2022125877 title "Numerical simulation of shear-induced instabilities in internal solitary waves" @default.
- W2022125877 cites W1968456014 @default.
- W2022125877 cites W1980428545 @default.
- W2022125877 cites W1983455594 @default.
- W2022125877 cites W1989816749 @default.
- W2022125877 cites W1996792134 @default.
- W2022125877 cites W2004670858 @default.
- W2022125877 cites W2005115557 @default.
- W2022125877 cites W2007104457 @default.
- W2022125877 cites W2016771184 @default.
- W2022125877 cites W2018942026 @default.
- W2022125877 cites W2020290230 @default.
- W2022125877 cites W2025693226 @default.
- W2022125877 cites W2036117751 @default.
- W2022125877 cites W2046657726 @default.
- W2022125877 cites W2063122981 @default.
- W2022125877 cites W2065794628 @default.
- W2022125877 cites W2067333638 @default.
- W2022125877 cites W207061127 @default.
- W2022125877 cites W2085690739 @default.
- W2022125877 cites W2090515820 @default.
- W2022125877 cites W2094273858 @default.
- W2022125877 cites W2096092632 @default.
- W2022125877 cites W2097403882 @default.
- W2022125877 cites W2112057211 @default.
- W2022125877 cites W2116219044 @default.
- W2022125877 cites W2126244856 @default.
- W2022125877 cites W2133857465 @default.
- W2022125877 cites W2133985633 @default.
- W2022125877 cites W2140210133 @default.
- W2022125877 cites W2140809812 @default.
- W2022125877 cites W2141199042 @default.
- W2022125877 cites W2151308867 @default.
- W2022125877 cites W2164473983 @default.
- W2022125877 cites W2171784500 @default.
- W2022125877 cites W4254520956 @default.
- W2022125877 cites W4255368379 @default.
- W2022125877 doi "https://doi.org/10.1017/jfm.2011.261" @default.
- W2022125877 hasPublicationYear "2011" @default.
- W2022125877 type Work @default.
- W2022125877 sameAs 2022125877 @default.
- W2022125877 citedByCount "24" @default.
- W2022125877 countsByYear W20221258772012 @default.
- W2022125877 countsByYear W20221258772013 @default.
- W2022125877 countsByYear W20221258772014 @default.
- W2022125877 countsByYear W20221258772015 @default.
- W2022125877 countsByYear W20221258772017 @default.
- W2022125877 countsByYear W20221258772018 @default.
- W2022125877 countsByYear W20221258772019 @default.
- W2022125877 countsByYear W20221258772020 @default.
- W2022125877 countsByYear W20221258772021 @default.
- W2022125877 crossrefType "journal-article" @default.
- W2022125877 hasAuthorship W2022125877A5053585039 @default.
- W2022125877 hasAuthorship W2022125877A5074427505 @default.
- W2022125877 hasAuthorship W2022125877A5086096760 @default.
- W2022125877 hasBestOaLocation W20221258772 @default.
- W2022125877 hasConcept C100701293 @default.
- W2022125877 hasConcept C111368507 @default.
- W2022125877 hasConcept C120665830 @default.
- W2022125877 hasConcept C121332964 @default.
- W2022125877 hasConcept C127313418 @default.
- W2022125877 hasConcept C128963330 @default.
- W2022125877 hasConcept C135768490 @default.
- W2022125877 hasConcept C146864707 @default.
- W2022125877 hasConcept C192943249 @default.
- W2022125877 hasConcept C194896862 @default.
- W2022125877 hasConcept C196558001 @default.
- W2022125877 hasConcept C207821765 @default.
- W2022125877 hasConcept C2776310255 @default.
- W2022125877 hasConcept C2778113609 @default.
- W2022125877 hasConcept C2779729707 @default.
- W2022125877 hasConcept C3527866 @default.
- W2022125877 hasConcept C5072599 @default.
- W2022125877 hasConcept C57879066 @default.
- W2022125877 hasConcept C59822182 @default.
- W2022125877 hasConcept C84655787 @default.
- W2022125877 hasConcept C86252789 @default.
- W2022125877 hasConcept C86803240 @default.
- W2022125877 hasConcept C88548481 @default.
- W2022125877 hasConcept C97355855 @default.
- W2022125877 hasConceptScore W2022125877C100701293 @default.
- W2022125877 hasConceptScore W2022125877C111368507 @default.
- W2022125877 hasConceptScore W2022125877C120665830 @default.
- W2022125877 hasConceptScore W2022125877C121332964 @default.
- W2022125877 hasConceptScore W2022125877C127313418 @default.
- W2022125877 hasConceptScore W2022125877C128963330 @default.
- W2022125877 hasConceptScore W2022125877C135768490 @default.
- W2022125877 hasConceptScore W2022125877C146864707 @default.
- W2022125877 hasConceptScore W2022125877C192943249 @default.
- W2022125877 hasConceptScore W2022125877C194896862 @default.
- W2022125877 hasConceptScore W2022125877C196558001 @default.