Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022132077> ?p ?o ?g. }
- W2022132077 endingPage "223" @default.
- W2022132077 startingPage "214" @default.
- W2022132077 abstract "The large land area occupied by arid lands, roughly 36% to 40% globally, underscores the importance for understanding how these ecosystems function in the global carbon cycle. Few studies have directly examined soil organic carbon (SOC) dynamics and the effect of vegetation on SOC and microbial community structure in arid ecosystems. The objective of this study was to determine the effect of vegetation type on SOC dynamics in an arid, hyperthermic Sonoran Desert ecosystem. We specifically examined the influence of Prosopis velutina (mesquite), Larrea tridentata (creosote), and a combination of Bouteloua barbata, Bouteloua aristidoides, Aristida adscensionis, and Cynodon dactylon (mixed grass) vegetation types on SOC dynamics by quantifying: (i) local scale SOC stocks; (ii) soil aggregate stability; (iii) SOC turnover; and (iv) soil microbial community composition. There was significantly greater SOC in mesquite A-horizons relative to creosote and grass sites with values of 46.7, 30.4, and 24.4 g m− 2, respectively. Subsurface SOC content did not vary significantly between vegetation types. Aggregate stability determined using an ultrasonic dispersion technique was found to be similar among vegetation types. The only significant difference noted was greater energy required to disperse stable aggregates in mesquite relative to grass soils, 1500 and 735 J g− 1 soil, respectively. Laboratory incubations were performed to determine SOC dynamics, pool sizes, and active pool mean residence times (MRT) for each vegetation type. Incubation results indicated significant variation in the cumulative respired CO2 under mesquite, creosote, and grasses with 151, 186, and 207 mg C g− 1 soil C respired from each respective vegetation type. The incubation data indicated that 7–11% of total SOC was highly labile across all vegetation types with modeled active pool SOC MRT averaging 17 days. Bacterial community analysis by Terminal Restriction Fragment Length Polymorphism (TRFLP) indicated significant differences in microbial community structure among vegetation types. Microbial composition was highly correlated with soil pH and electrical conductivity. Furthermore, community composition was correlated with cumulative respired CO2, suggesting an interaction among vegetation type, soil properties and microbial community control SOC dynamics in this ecosystem. The combined results indicated significant variation in SOC dynamics within a specific ecosystem by vegetation type. Understanding local-scale vegetation controls of soil carbon cycling may improve efforts to model regional carbon dynamics in arid environments." @default.
- W2022132077 created "2016-06-24" @default.
- W2022132077 creator A5007560067 @default.
- W2022132077 creator A5011956785 @default.
- W2022132077 creator A5013963828 @default.
- W2022132077 creator A5079031135 @default.
- W2022132077 date "2009-04-01" @default.
- W2022132077 modified "2023-10-01" @default.
- W2022132077 title "Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem" @default.
- W2022132077 cites W1607927677 @default.
- W2022132077 cites W1666697923 @default.
- W2022132077 cites W176332431 @default.
- W2022132077 cites W1798650416 @default.
- W2022132077 cites W1857591892 @default.
- W2022132077 cites W1964890944 @default.
- W2022132077 cites W1967223329 @default.
- W2022132077 cites W1969803925 @default.
- W2022132077 cites W1974434951 @default.
- W2022132077 cites W1975819802 @default.
- W2022132077 cites W1981630225 @default.
- W2022132077 cites W1981691173 @default.
- W2022132077 cites W1982253315 @default.
- W2022132077 cites W1984000471 @default.
- W2022132077 cites W1986290270 @default.
- W2022132077 cites W1988396787 @default.
- W2022132077 cites W1992850819 @default.
- W2022132077 cites W1995556297 @default.
- W2022132077 cites W1999323224 @default.
- W2022132077 cites W1999794004 @default.
- W2022132077 cites W2011040870 @default.
- W2022132077 cites W2017866161 @default.
- W2022132077 cites W2020734197 @default.
- W2022132077 cites W2022512595 @default.
- W2022132077 cites W2025104362 @default.
- W2022132077 cites W2027421883 @default.
- W2022132077 cites W2029855766 @default.
- W2022132077 cites W2030104910 @default.
- W2022132077 cites W2037839457 @default.
- W2022132077 cites W2038613948 @default.
- W2022132077 cites W2040916704 @default.
- W2022132077 cites W2046760544 @default.
- W2022132077 cites W2050825651 @default.
- W2022132077 cites W2052289430 @default.
- W2022132077 cites W2053756232 @default.
- W2022132077 cites W2055986612 @default.
- W2022132077 cites W2059076418 @default.
- W2022132077 cites W2061023452 @default.
- W2022132077 cites W2068436996 @default.
- W2022132077 cites W2072627116 @default.
- W2022132077 cites W2079836758 @default.
- W2022132077 cites W2081385643 @default.
- W2022132077 cites W2086881778 @default.
- W2022132077 cites W2092591628 @default.
- W2022132077 cites W2099053943 @default.
- W2022132077 cites W2100442254 @default.
- W2022132077 cites W2101649816 @default.
- W2022132077 cites W2104435517 @default.
- W2022132077 cites W2109895772 @default.
- W2022132077 cites W2111345093 @default.
- W2022132077 cites W2117021290 @default.
- W2022132077 cites W2123039154 @default.
- W2022132077 cites W2125927859 @default.
- W2022132077 cites W2127636362 @default.
- W2022132077 cites W2128211988 @default.
- W2022132077 cites W2128651610 @default.
- W2022132077 cites W2137018917 @default.
- W2022132077 cites W2141878746 @default.
- W2022132077 cites W2141895462 @default.
- W2022132077 cites W2142899717 @default.
- W2022132077 cites W2145166062 @default.
- W2022132077 cites W2147409082 @default.
- W2022132077 cites W2152632432 @default.
- W2022132077 cites W2154247415 @default.
- W2022132077 cites W2157462758 @default.
- W2022132077 cites W2162857077 @default.
- W2022132077 cites W2171322695 @default.
- W2022132077 cites W2172956642 @default.
- W2022132077 cites W2319581524 @default.
- W2022132077 cites W233422678 @default.
- W2022132077 cites W239584383 @default.
- W2022132077 cites W4230547193 @default.
- W2022132077 cites W4239210365 @default.
- W2022132077 doi "https://doi.org/10.1016/j.geoderma.2009.02.011" @default.
- W2022132077 hasPublicationYear "2009" @default.
- W2022132077 type Work @default.
- W2022132077 sameAs 2022132077 @default.
- W2022132077 citedByCount "33" @default.
- W2022132077 countsByYear W20221320772012 @default.
- W2022132077 countsByYear W20221320772013 @default.
- W2022132077 countsByYear W20221320772014 @default.
- W2022132077 countsByYear W20221320772015 @default.
- W2022132077 countsByYear W20221320772016 @default.
- W2022132077 countsByYear W20221320772017 @default.
- W2022132077 countsByYear W20221320772018 @default.
- W2022132077 countsByYear W20221320772019 @default.
- W2022132077 countsByYear W20221320772020 @default.
- W2022132077 countsByYear W20221320772022 @default.
- W2022132077 countsByYear W20221320772023 @default.