Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022135581> ?p ?o ?g. }
- W2022135581 endingPage "324" @default.
- W2022135581 startingPage "313" @default.
- W2022135581 abstract "This project examines the different approaches which deal with the theory of radiative transfer on atmosphereless bodies. We present the relative merits of two scattering theories based on the equivalent slab model: the extensively used Hapke theory (Hapke 1981, J. Geophys. Res.86, 3039–3054) and the Shkuratov theory (Shkuratov et al. 1999, Icarus141, 132–155). We found that their main difference is the role of the phase function of individual particles of regolith, which is predicted (and generally forward directed) in the case of the Shkuratov model instead of being a free parameter as formulated in the Hapke model. We also emphasize that different assumptions as to the manner in which different constituents are physically mixed in either model have a substantial effect on the synthetic spectra inferred. This leads to a significant extension of the validity of Hapke's or similar practical approaches to areas where these approaches are valid. We used two objects (the Centaurs 5145 Pholus and 8405 Asbolus) as examples. Previous modeling of the spectra of these two bodies with the Hapke approach gave suspect results in terms of the derived grain sizes, which were smaller than the wavelength, violating key assumptions of the model (Cruikshank et al. 1998, Icarus135, 389–407 for Pholus; Barucci et al. 2000, Astron. Astrophys.357, L53–56 for Asbolus). We considered several different types of powdered surfaces to interpret the surface composition of these two Centaurs. The effect of fine-scale contamination of water ice grains by small amounts of carbon and/or tholins is also explored. We can explain the strong red color and the rich near-infrared spectral signatures of Pholus using a five-component surface (contaminated water ice, amorphous carbon, Titan tholin, olivine, and methanol ice) where the grain sizes are consistent with the model assumptions. These components are similar to those inferred by Cruikshank et al. (1998), but we obtain very different grain sizes and relative abundances. For example, we obtain a relative abundance of water ice on the surface of Pholus of about 40% instead of 6% found with the Hapke model. Organic and carbonaceous components change by similar amounts. In the case of Asbolus, a tholin and amorphous carbon areal mixture can reproduce the spectrum, with water remaining at 9% or less. Using the albedo published by Fernandez et al. (2002, Astron. J.123, 1050–1055) which is higher than most workers assume for Centaurs and Kuiper belt objects, a surface composition similar to that of Pholus is found. It appears that model-based uncertainties in relative compositions must be regarded with more attention." @default.
- W2022135581 created "2016-06-24" @default.
- W2022135581 creator A5026073604 @default.
- W2022135581 date "2002-12-01" @default.
- W2022135581 modified "2023-09-25" @default.
- W2022135581 title "Comparison between the Shkuratov and Hapke Scattering Theories for Solid Planetary Surfaces: Application to the Surface Composition of Two Centaurs" @default.
- W2022135581 cites W1586765088 @default.
- W2022135581 cites W160754955 @default.
- W2022135581 cites W1623301632 @default.
- W2022135581 cites W1645477387 @default.
- W2022135581 cites W1669655639 @default.
- W2022135581 cites W1672766972 @default.
- W2022135581 cites W1963655996 @default.
- W2022135581 cites W1964469559 @default.
- W2022135581 cites W1964733267 @default.
- W2022135581 cites W1967150870 @default.
- W2022135581 cites W1968443772 @default.
- W2022135581 cites W1978446652 @default.
- W2022135581 cites W1980579904 @default.
- W2022135581 cites W1984288300 @default.
- W2022135581 cites W2000096409 @default.
- W2022135581 cites W2000740875 @default.
- W2022135581 cites W2003165523 @default.
- W2022135581 cites W2003930888 @default.
- W2022135581 cites W2006304978 @default.
- W2022135581 cites W2008500500 @default.
- W2022135581 cites W2017073030 @default.
- W2022135581 cites W2022727287 @default.
- W2022135581 cites W2029136094 @default.
- W2022135581 cites W2030082211 @default.
- W2022135581 cites W2031956665 @default.
- W2022135581 cites W2033124809 @default.
- W2022135581 cites W2034253422 @default.
- W2022135581 cites W2037181666 @default.
- W2022135581 cites W2037980631 @default.
- W2022135581 cites W2052886023 @default.
- W2022135581 cites W2053106934 @default.
- W2022135581 cites W2057433998 @default.
- W2022135581 cites W2070259289 @default.
- W2022135581 cites W2078222544 @default.
- W2022135581 cites W2079854548 @default.
- W2022135581 cites W2080906346 @default.
- W2022135581 cites W2090089832 @default.
- W2022135581 cites W2092711593 @default.
- W2022135581 cites W2105846574 @default.
- W2022135581 cites W2111631716 @default.
- W2022135581 cites W2134500516 @default.
- W2022135581 cites W2135707908 @default.
- W2022135581 cites W3135227555 @default.
- W2022135581 cites W3168699374 @default.
- W2022135581 cites W40659960 @default.
- W2022135581 cites W82109851 @default.
- W2022135581 cites W2119290406 @default.
- W2022135581 doi "https://doi.org/10.1006/icar.2002.6970" @default.
- W2022135581 hasPublicationYear "2002" @default.
- W2022135581 type Work @default.
- W2022135581 sameAs 2022135581 @default.
- W2022135581 citedByCount "120" @default.
- W2022135581 countsByYear W20221355812012 @default.
- W2022135581 countsByYear W20221355812013 @default.
- W2022135581 countsByYear W20221355812014 @default.
- W2022135581 countsByYear W20221355812015 @default.
- W2022135581 countsByYear W20221355812016 @default.
- W2022135581 countsByYear W20221355812017 @default.
- W2022135581 countsByYear W20221355812018 @default.
- W2022135581 countsByYear W20221355812019 @default.
- W2022135581 countsByYear W20221355812020 @default.
- W2022135581 countsByYear W20221355812021 @default.
- W2022135581 countsByYear W20221355812022 @default.
- W2022135581 crossrefType "journal-article" @default.
- W2022135581 hasAuthorship W2022135581A5026073604 @default.
- W2022135581 hasConcept C120665830 @default.
- W2022135581 hasConcept C121332964 @default.
- W2022135581 hasConcept C191486275 @default.
- W2022135581 hasConcept C2776611462 @default.
- W2022135581 hasConcept C41642174 @default.
- W2022135581 hasConcept C44870925 @default.
- W2022135581 hasConcept C6260449 @default.
- W2022135581 hasConcept C87355193 @default.
- W2022135581 hasConceptScore W2022135581C120665830 @default.
- W2022135581 hasConceptScore W2022135581C121332964 @default.
- W2022135581 hasConceptScore W2022135581C191486275 @default.
- W2022135581 hasConceptScore W2022135581C2776611462 @default.
- W2022135581 hasConceptScore W2022135581C41642174 @default.
- W2022135581 hasConceptScore W2022135581C44870925 @default.
- W2022135581 hasConceptScore W2022135581C6260449 @default.
- W2022135581 hasConceptScore W2022135581C87355193 @default.
- W2022135581 hasIssue "2" @default.
- W2022135581 hasLocation W20221355811 @default.
- W2022135581 hasOpenAccess W2022135581 @default.
- W2022135581 hasPrimaryLocation W20221355811 @default.
- W2022135581 hasRelatedWork W2083552051 @default.
- W2022135581 hasRelatedWork W2197983011 @default.
- W2022135581 hasRelatedWork W2571294249 @default.
- W2022135581 hasRelatedWork W3176132711 @default.
- W2022135581 hasRelatedWork W3185798965 @default.
- W2022135581 hasRelatedWork W4234533497 @default.
- W2022135581 hasRelatedWork W4235571339 @default.