Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022144657> ?p ?o ?g. }
- W2022144657 endingPage "1006" @default.
- W2022144657 startingPage "979" @default.
- W2022144657 abstract "Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in the original problem and the QP subproblems. SNOPT is a particular implementation that makes use of a semidefinite QP solver. It is based on a limited-memory quasi-Newton approximation to the Hessian of the Lagrangian and uses a reduced-Hessian algorithm (SQOPT) for solving the QP subproblems. It is designed for problems with many thousands of constraints and variables but a moderate number of degrees of freedom (say, up to 2000). An important application is to trajectory optimization in the aerospace industry. Numerical results are given for most problems in the CUTE and COPS test collections (about 900 examples)." @default.
- W2022144657 created "2016-06-24" @default.
- W2022144657 creator A5003732991 @default.
- W2022144657 creator A5039807799 @default.
- W2022144657 creator A5069853684 @default.
- W2022144657 date "2002-01-01" @default.
- W2022144657 modified "2023-10-11" @default.
- W2022144657 title "SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization" @default.
- W2022144657 cites W134710597 @default.
- W2022144657 cites W1508335918 @default.
- W2022144657 cites W1604006541 @default.
- W2022144657 cites W189195062 @default.
- W2022144657 cites W1967581563 @default.
- W2022144657 cites W1968553199 @default.
- W2022144657 cites W1971536112 @default.
- W2022144657 cites W1972615387 @default.
- W2022144657 cites W1977070794 @default.
- W2022144657 cites W1977187942 @default.
- W2022144657 cites W1977244564 @default.
- W2022144657 cites W1980384412 @default.
- W2022144657 cites W1983136865 @default.
- W2022144657 cites W1987336415 @default.
- W2022144657 cites W1994126718 @default.
- W2022144657 cites W2005126631 @default.
- W2022144657 cites W2006121495 @default.
- W2022144657 cites W2016663659 @default.
- W2022144657 cites W2020700474 @default.
- W2022144657 cites W2025469203 @default.
- W2022144657 cites W2032860805 @default.
- W2022144657 cites W2033623955 @default.
- W2022144657 cites W2035002995 @default.
- W2022144657 cites W2035814233 @default.
- W2022144657 cites W2039262150 @default.
- W2022144657 cites W2041684917 @default.
- W2022144657 cites W2046763850 @default.
- W2022144657 cites W2048799772 @default.
- W2022144657 cites W2049421260 @default.
- W2022144657 cites W2051434435 @default.
- W2022144657 cites W2057875970 @default.
- W2022144657 cites W2058839679 @default.
- W2022144657 cites W2059899863 @default.
- W2022144657 cites W2064873618 @default.
- W2022144657 cites W2066237909 @default.
- W2022144657 cites W2066333398 @default.
- W2022144657 cites W2080132051 @default.
- W2022144657 cites W2081387733 @default.
- W2022144657 cites W2091985100 @default.
- W2022144657 cites W2098918699 @default.
- W2022144657 cites W2107501462 @default.
- W2022144657 cites W2119079709 @default.
- W2022144657 cites W2130844535 @default.
- W2022144657 cites W2149454052 @default.
- W2022144657 cites W2153738380 @default.
- W2022144657 cites W2165622925 @default.
- W2022144657 cites W4235042710 @default.
- W2022144657 cites W4241910220 @default.
- W2022144657 cites W4250852484 @default.
- W2022144657 doi "https://doi.org/10.1137/s1052623499350013" @default.
- W2022144657 hasPublicationYear "2002" @default.
- W2022144657 type Work @default.
- W2022144657 sameAs 2022144657 @default.
- W2022144657 citedByCount "1302" @default.
- W2022144657 countsByYear W20221446572012 @default.
- W2022144657 countsByYear W20221446572013 @default.
- W2022144657 countsByYear W20221446572014 @default.
- W2022144657 countsByYear W20221446572015 @default.
- W2022144657 countsByYear W20221446572016 @default.
- W2022144657 countsByYear W20221446572017 @default.
- W2022144657 countsByYear W20221446572018 @default.
- W2022144657 countsByYear W20221446572019 @default.
- W2022144657 countsByYear W20221446572020 @default.
- W2022144657 countsByYear W20221446572021 @default.
- W2022144657 countsByYear W20221446572022 @default.
- W2022144657 countsByYear W20221446572023 @default.
- W2022144657 crossrefType "journal-article" @default.
- W2022144657 hasAuthorship W2022144657A5003732991 @default.
- W2022144657 hasAuthorship W2022144657A5039807799 @default.
- W2022144657 hasAuthorship W2022144657A5069853684 @default.
- W2022144657 hasConcept C11413529 @default.
- W2022144657 hasConcept C115527620 @default.
- W2022144657 hasConcept C121332964 @default.
- W2022144657 hasConcept C126255220 @default.
- W2022144657 hasConcept C132721684 @default.
- W2022144657 hasConcept C137836250 @default.
- W2022144657 hasConcept C150452318 @default.
- W2022144657 hasConcept C151319957 @default.
- W2022144657 hasConcept C158622935 @default.
- W2022144657 hasConcept C178635117 @default.
- W2022144657 hasConcept C198927703 @default.
- W2022144657 hasConcept C203616005 @default.
- W2022144657 hasConcept C2524010 @default.
- W2022144657 hasConcept C2776036281 @default.
- W2022144657 hasConcept C2778770139 @default.
- W2022144657 hasConcept C28826006 @default.
- W2022144657 hasConcept C31258907 @default.
- W2022144657 hasConcept C33923547 @default.
- W2022144657 hasConcept C38652104 @default.
- W2022144657 hasConcept C41008148 @default.