Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022147537> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2022147537 endingPage "61" @default.
- W2022147537 startingPage "47" @default.
- W2022147537 abstract "SUMMARY Social workers and other mental health workers lack clinical decision support tools to predict which clients are at greatest risk of psychiatric rehospitalization. Artificial neural networks (ANNs), are computer decision support tools that make prediction and classification decisions based on accumulated experience and information contained in successfully solved cases (correct decisions). This study evaluates the use of ANNs in predicting rehospitalization of severely mentally ill outpatients. Eight Bayesian ANN models achieved correct prediction rates ranging from 75% to 93% for two prediction conditions. These results support the utility of Bayesian ANN models in the development of clinical decision support tools." @default.
- W2022147537 created "2016-06-24" @default.
- W2022147537 creator A5077202069 @default.
- W2022147537 creator A5003084313 @default.
- W2022147537 date "2000-01-31" @default.
- W2022147537 modified "2023-09-26" @default.
- W2022147537 title "The Application of Artificial Neural Networks for Outcome Prediction in a Cohort of Severely Mentally Ill Outpatients" @default.
- W2022147537 cites W185720572 @default.
- W2022147537 cites W1971885154 @default.
- W2022147537 cites W2006230139 @default.
- W2022147537 cites W2012218966 @default.
- W2022147537 cites W2019279857 @default.
- W2022147537 cites W2020434378 @default.
- W2022147537 cites W2029951305 @default.
- W2022147537 cites W2052760263 @default.
- W2022147537 cites W2053194201 @default.
- W2022147537 cites W2054623842 @default.
- W2022147537 cites W2057513161 @default.
- W2022147537 cites W2062884568 @default.
- W2022147537 cites W2063306646 @default.
- W2022147537 cites W2068428430 @default.
- W2022147537 cites W2069938337 @default.
- W2022147537 cites W2076750860 @default.
- W2022147537 cites W2086482881 @default.
- W2022147537 cites W2114334028 @default.
- W2022147537 cites W2156133368 @default.
- W2022147537 cites W2328435789 @default.
- W2022147537 cites W2329645734 @default.
- W2022147537 doi "https://doi.org/10.1300/j017v16n02_05" @default.
- W2022147537 hasPublicationYear "2000" @default.
- W2022147537 type Work @default.
- W2022147537 sameAs 2022147537 @default.
- W2022147537 citedByCount "9" @default.
- W2022147537 countsByYear W20221475372016 @default.
- W2022147537 countsByYear W20221475372020 @default.
- W2022147537 countsByYear W20221475372022 @default.
- W2022147537 crossrefType "journal-article" @default.
- W2022147537 hasAuthorship W2022147537A5003084313 @default.
- W2022147537 hasAuthorship W2022147537A5077202069 @default.
- W2022147537 hasConcept C118552586 @default.
- W2022147537 hasConcept C126322002 @default.
- W2022147537 hasConcept C134362201 @default.
- W2022147537 hasConcept C144237770 @default.
- W2022147537 hasConcept C148220186 @default.
- W2022147537 hasConcept C154945302 @default.
- W2022147537 hasConcept C15744967 @default.
- W2022147537 hasConcept C2776674806 @default.
- W2022147537 hasConcept C3019946834 @default.
- W2022147537 hasConcept C33923547 @default.
- W2022147537 hasConcept C41008148 @default.
- W2022147537 hasConcept C50644808 @default.
- W2022147537 hasConcept C71924100 @default.
- W2022147537 hasConcept C72563966 @default.
- W2022147537 hasConceptScore W2022147537C118552586 @default.
- W2022147537 hasConceptScore W2022147537C126322002 @default.
- W2022147537 hasConceptScore W2022147537C134362201 @default.
- W2022147537 hasConceptScore W2022147537C144237770 @default.
- W2022147537 hasConceptScore W2022147537C148220186 @default.
- W2022147537 hasConceptScore W2022147537C154945302 @default.
- W2022147537 hasConceptScore W2022147537C15744967 @default.
- W2022147537 hasConceptScore W2022147537C2776674806 @default.
- W2022147537 hasConceptScore W2022147537C3019946834 @default.
- W2022147537 hasConceptScore W2022147537C33923547 @default.
- W2022147537 hasConceptScore W2022147537C41008148 @default.
- W2022147537 hasConceptScore W2022147537C50644808 @default.
- W2022147537 hasConceptScore W2022147537C71924100 @default.
- W2022147537 hasConceptScore W2022147537C72563966 @default.
- W2022147537 hasIssue "2-3" @default.
- W2022147537 hasLocation W20221475371 @default.
- W2022147537 hasOpenAccess W2022147537 @default.
- W2022147537 hasPrimaryLocation W20221475371 @default.
- W2022147537 hasRelatedWork W2035682242 @default.
- W2022147537 hasRelatedWork W2041509531 @default.
- W2022147537 hasRelatedWork W2071535500 @default.
- W2022147537 hasRelatedWork W2315085516 @default.
- W2022147537 hasRelatedWork W2386387936 @default.
- W2022147537 hasRelatedWork W2603773853 @default.
- W2022147537 hasRelatedWork W2748952813 @default.
- W2022147537 hasRelatedWork W2899084033 @default.
- W2022147537 hasRelatedWork W2952239533 @default.
- W2022147537 hasRelatedWork W3107474891 @default.
- W2022147537 hasVolume "16" @default.
- W2022147537 isParatext "false" @default.
- W2022147537 isRetracted "false" @default.
- W2022147537 magId "2022147537" @default.
- W2022147537 workType "article" @default.