Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022148737> ?p ?o ?g. }
- W2022148737 abstract "Abstract Background Identification of protein interacting sites is an important task in computational molecular biology. As more and more protein sequences are deposited without available structural information, it is strongly desirable to predict protein binding regions by their sequences alone. This paper presents a pattern mining approach to tackle this problem. It is observed that a functional region of protein structures usually consists of several peptide segments linked with large wildcard regions. Thus, the proposed mining technology considers large irregular gaps when growing patterns, in order to find the residues that are simultaneously conserved but largely separated on the sequences. A derived pattern is called a cluster-like pattern since the discovered conserved residues are always grouped into several blocks, which each corresponds to a local conserved region on the protein sequence. Results The experiments conducted in this work demonstrate that the derived long patterns automatically discover the important residues that form one or several hot regions of protein-protein interactions. The methodology is evaluated by conducting experiments on the web server MAGIIC-PRO based on a well known benchmark containing 220 protein chains from 72 distinct complexes. Among the tested 218 proteins, there are 900 sequential blocks discovered, 4.25 blocks per protein chain on average. About 92% of the derived blocks are observed to be clustered in space with at least one of the other blocks, and about 66% of the blocks are found to be near the interface of protein-protein interactions. It is summarized that for about 83% of the tested proteins, at least two interacting blocks can be discovered by this approach. Conclusion This work aims to demonstrate that the important residues associated with the interface of protein-protein interactions may be automatically discovered by sequential pattern mining. The detected regions possess high conservation and thus are considered as the computational hot regions. This information would be useful to characterizing protein sequences, predicting protein function, finding potential partners, and facilitating protein docking for drug discovery." @default.
- W2022148737 created "2016-06-24" @default.
- W2022148737 creator A5025757592 @default.
- W2022148737 creator A5031742613 @default.
- W2022148737 creator A5042529494 @default.
- W2022148737 creator A5047461400 @default.
- W2022148737 creator A5054453758 @default.
- W2022148737 creator A5062957931 @default.
- W2022148737 creator A5086680811 @default.
- W2022148737 date "2007-05-01" @default.
- W2022148737 modified "2023-10-09" @default.
- W2022148737 title "Identification of hot regions in protein-protein interactions by sequential pattern mining" @default.
- W2022148737 cites W1483099488 @default.
- W2022148737 cites W1529325755 @default.
- W2022148737 cites W1556480481 @default.
- W2022148737 cites W1965582988 @default.
- W2022148737 cites W1970072631 @default.
- W2022148737 cites W1982871387 @default.
- W2022148737 cites W1985153601 @default.
- W2022148737 cites W1987328021 @default.
- W2022148737 cites W1995924392 @default.
- W2022148737 cites W1997803213 @default.
- W2022148737 cites W2000093524 @default.
- W2022148737 cites W2002924743 @default.
- W2022148737 cites W2013988051 @default.
- W2022148737 cites W2014744153 @default.
- W2022148737 cites W2019019284 @default.
- W2022148737 cites W2027036222 @default.
- W2022148737 cites W2028903194 @default.
- W2022148737 cites W2031772330 @default.
- W2022148737 cites W2040074453 @default.
- W2022148737 cites W2043543538 @default.
- W2022148737 cites W2043699100 @default.
- W2022148737 cites W2046407284 @default.
- W2022148737 cites W2047630272 @default.
- W2022148737 cites W2051710717 @default.
- W2022148737 cites W2058017150 @default.
- W2022148737 cites W2058527555 @default.
- W2022148737 cites W2059067075 @default.
- W2022148737 cites W2069663555 @default.
- W2022148737 cites W2075770210 @default.
- W2022148737 cites W2078302553 @default.
- W2022148737 cites W2092258844 @default.
- W2022148737 cites W2094148990 @default.
- W2022148737 cites W2095805596 @default.
- W2022148737 cites W2096119514 @default.
- W2022148737 cites W2103818457 @default.
- W2022148737 cites W2104760790 @default.
- W2022148737 cites W2109228802 @default.
- W2022148737 cites W2115156437 @default.
- W2022148737 cites W2119498937 @default.
- W2022148737 cites W2124904677 @default.
- W2022148737 cites W2129558039 @default.
- W2022148737 cites W2130479394 @default.
- W2022148737 cites W2132109794 @default.
- W2022148737 cites W2135498219 @default.
- W2022148737 cites W2136525667 @default.
- W2022148737 cites W2137991504 @default.
- W2022148737 cites W2142757818 @default.
- W2022148737 cites W2143210482 @default.
- W2022148737 cites W2148219066 @default.
- W2022148737 cites W2153577994 @default.
- W2022148737 cites W2156125289 @default.
- W2022148737 cites W2157735020 @default.
- W2022148737 cites W2157892451 @default.
- W2022148737 cites W2158714788 @default.
- W2022148737 cites W2160690759 @default.
- W2022148737 cites W2161062388 @default.
- W2022148737 cites W2165181282 @default.
- W2022148737 cites W2166086559 @default.
- W2022148737 cites W2168196587 @default.
- W2022148737 cites W4248357178 @default.
- W2022148737 cites W4317639370 @default.
- W2022148737 doi "https://doi.org/10.1186/1471-2105-8-s5-s8" @default.
- W2022148737 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1892096" @default.
- W2022148737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17570867" @default.
- W2022148737 hasPublicationYear "2007" @default.
- W2022148737 type Work @default.
- W2022148737 sameAs 2022148737 @default.
- W2022148737 citedByCount "39" @default.
- W2022148737 countsByYear W20221487372012 @default.
- W2022148737 countsByYear W20221487372013 @default.
- W2022148737 countsByYear W20221487372014 @default.
- W2022148737 countsByYear W20221487372015 @default.
- W2022148737 countsByYear W20221487372016 @default.
- W2022148737 countsByYear W20221487372017 @default.
- W2022148737 countsByYear W20221487372018 @default.
- W2022148737 countsByYear W20221487372019 @default.
- W2022148737 countsByYear W20221487372020 @default.
- W2022148737 countsByYear W20221487372021 @default.
- W2022148737 crossrefType "journal-article" @default.
- W2022148737 hasAuthorship W2022148737A5025757592 @default.
- W2022148737 hasAuthorship W2022148737A5031742613 @default.
- W2022148737 hasAuthorship W2022148737A5042529494 @default.
- W2022148737 hasAuthorship W2022148737A5047461400 @default.
- W2022148737 hasAuthorship W2022148737A5054453758 @default.
- W2022148737 hasAuthorship W2022148737A5062957931 @default.
- W2022148737 hasAuthorship W2022148737A5086680811 @default.
- W2022148737 hasBestOaLocation W20221487371 @default.
- W2022148737 hasConcept C10010492 @default.