Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022148913> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2022148913 abstract "The identification and measurement of buildings in imagery is important to a number of applications including cartography, modeling and simulation, and weapon targeting. Extracting large numbers of buildings manually can be time- consuming and expensive, so the automation of the process is highly desirable. This paper describes and demonstrates such an automated process for extracting rectilinear buildings from stereo imagery. The first step is the generation of a dense elevation matrix registered to the imagery. In the examples shown, this was accomplished using global minimum residual matching (GMRM). GMRM automatically removes y- parallax from the stereo imagery and produces a dense matrix of x-parallax values which are proportional to the local elevation, and, of course, registered to the imagery. The second step is to form a joint probability distribution of the image gray levels and the corresponding height values from the elevation matrix. Based on the peaks of that distribution, the area of interest is segmented into feature and non-feature areas. The feature areas are further refined using length, width and height constraints to yield promising building hypotheses with their corresponding vertices. The gray shade image is used in the third step to verify the hypotheses and to determine precise edge locations corresponding to the approximate vertices and satisfying appropriate orthogonality constraints. Examples of successful application of this process to imagery are presented, and extensions involving the use of dense elevation matrices from other sources are possible.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only." @default.
- W2022148913 created "2016-06-24" @default.
- W2022148913 creator A5030616542 @default.
- W2022148913 creator A5081951633 @default.
- W2022148913 creator A5084300312 @default.
- W2022148913 date "1997-02-26" @default.
- W2022148913 modified "2023-09-23" @default.
- W2022148913 title "<title>Automated building extraction using dense elevation matrices</title>" @default.
- W2022148913 doi "https://doi.org/10.1117/12.267827" @default.
- W2022148913 hasPublicationYear "1997" @default.
- W2022148913 type Work @default.
- W2022148913 sameAs 2022148913 @default.
- W2022148913 citedByCount "1" @default.
- W2022148913 crossrefType "proceedings-article" @default.
- W2022148913 hasAuthorship W2022148913A5030616542 @default.
- W2022148913 hasAuthorship W2022148913A5081951633 @default.
- W2022148913 hasAuthorship W2022148913A5084300312 @default.
- W2022148913 hasConcept C111919701 @default.
- W2022148913 hasConcept C120665830 @default.
- W2022148913 hasConcept C121332964 @default.
- W2022148913 hasConcept C138885662 @default.
- W2022148913 hasConcept C151857401 @default.
- W2022148913 hasConcept C153180895 @default.
- W2022148913 hasConcept C154945302 @default.
- W2022148913 hasConcept C15759828 @default.
- W2022148913 hasConcept C2524010 @default.
- W2022148913 hasConcept C2776401178 @default.
- W2022148913 hasConcept C31972630 @default.
- W2022148913 hasConcept C33923547 @default.
- W2022148913 hasConcept C37054046 @default.
- W2022148913 hasConcept C41008148 @default.
- W2022148913 hasConcept C41895202 @default.
- W2022148913 hasConcept C52622490 @default.
- W2022148913 hasConcept C98045186 @default.
- W2022148913 hasConceptScore W2022148913C111919701 @default.
- W2022148913 hasConceptScore W2022148913C120665830 @default.
- W2022148913 hasConceptScore W2022148913C121332964 @default.
- W2022148913 hasConceptScore W2022148913C138885662 @default.
- W2022148913 hasConceptScore W2022148913C151857401 @default.
- W2022148913 hasConceptScore W2022148913C153180895 @default.
- W2022148913 hasConceptScore W2022148913C154945302 @default.
- W2022148913 hasConceptScore W2022148913C15759828 @default.
- W2022148913 hasConceptScore W2022148913C2524010 @default.
- W2022148913 hasConceptScore W2022148913C2776401178 @default.
- W2022148913 hasConceptScore W2022148913C31972630 @default.
- W2022148913 hasConceptScore W2022148913C33923547 @default.
- W2022148913 hasConceptScore W2022148913C37054046 @default.
- W2022148913 hasConceptScore W2022148913C41008148 @default.
- W2022148913 hasConceptScore W2022148913C41895202 @default.
- W2022148913 hasConceptScore W2022148913C52622490 @default.
- W2022148913 hasConceptScore W2022148913C98045186 @default.
- W2022148913 hasLocation W20221489131 @default.
- W2022148913 hasOpenAccess W2022148913 @default.
- W2022148913 hasPrimaryLocation W20221489131 @default.
- W2022148913 hasRelatedWork W1506395524 @default.
- W2022148913 hasRelatedWork W1513876367 @default.
- W2022148913 hasRelatedWork W1964167192 @default.
- W2022148913 hasRelatedWork W1978135836 @default.
- W2022148913 hasRelatedWork W1987526435 @default.
- W2022148913 hasRelatedWork W2004509775 @default.
- W2022148913 hasRelatedWork W2008854074 @default.
- W2022148913 hasRelatedWork W2053395988 @default.
- W2022148913 hasRelatedWork W2091240853 @default.
- W2022148913 hasRelatedWork W2261058917 @default.
- W2022148913 hasRelatedWork W2496759915 @default.
- W2022148913 hasRelatedWork W2620618201 @default.
- W2022148913 hasRelatedWork W2790102754 @default.
- W2022148913 hasRelatedWork W2803805002 @default.
- W2022148913 hasRelatedWork W2899930599 @default.
- W2022148913 hasRelatedWork W2993534255 @default.
- W2022148913 hasRelatedWork W2998046886 @default.
- W2022148913 hasRelatedWork W3132130972 @default.
- W2022148913 hasRelatedWork W752140352 @default.
- W2022148913 hasRelatedWork W2189249869 @default.
- W2022148913 isParatext "false" @default.
- W2022148913 isRetracted "false" @default.
- W2022148913 magId "2022148913" @default.
- W2022148913 workType "article" @default.