Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022154531> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2022154531 abstract "This article firstly briefly introduces the principle of the non-linear Support Vector Regression Machine in the Support Vector Machines. Subsequently in order to improve and optimize the traditional Support Vector Regression Machine, Least Square Algorithm is adopted and Two-layer Planar Structure Optimization Method is put forward. Then the vessel traffic volume prediction model based on the optimized LS-SVR has been set up. Finally the prediction models are applied to the vessel traffic volume prediction of Yangtze Estuary Deepwater Channel, of which the volume is respectively obtained according to the characteristics of the length and gross tonnage of the ship. The performance comparison shows that the vessel traffic volume prediction model based on the optimized LS-SVR is valid and the model provides a good way for the medium-term prediction of traffic volume." @default.
- W2022154531 created "2016-06-24" @default.
- W2022154531 creator A5001533434 @default.
- W2022154531 creator A5041503339 @default.
- W2022154531 creator A5090396075 @default.
- W2022154531 date "2010-09-01" @default.
- W2022154531 modified "2023-09-27" @default.
- W2022154531 title "Optimized LS-SVR method applied to vessel traffic flow prediction" @default.
- W2022154531 cites W1582823229 @default.
- W2022154531 cites W1596717185 @default.
- W2022154531 cites W2084347746 @default.
- W2022154531 cites W2139238144 @default.
- W2022154531 cites W1597344355 @default.
- W2022154531 doi "https://doi.org/10.1109/cinc.2010.5643829" @default.
- W2022154531 hasPublicationYear "2010" @default.
- W2022154531 type Work @default.
- W2022154531 sameAs 2022154531 @default.
- W2022154531 citedByCount "1" @default.
- W2022154531 crossrefType "proceedings-article" @default.
- W2022154531 hasAuthorship W2022154531A5001533434 @default.
- W2022154531 hasAuthorship W2022154531A5041503339 @default.
- W2022154531 hasAuthorship W2022154531A5090396075 @default.
- W2022154531 hasConcept C11413529 @default.
- W2022154531 hasConcept C121332964 @default.
- W2022154531 hasConcept C12267149 @default.
- W2022154531 hasConcept C124101348 @default.
- W2022154531 hasConcept C126255220 @default.
- W2022154531 hasConcept C127162648 @default.
- W2022154531 hasConcept C127413603 @default.
- W2022154531 hasConcept C154945302 @default.
- W2022154531 hasConcept C168443057 @default.
- W2022154531 hasConcept C177264268 @default.
- W2022154531 hasConcept C199360897 @default.
- W2022154531 hasConcept C20556612 @default.
- W2022154531 hasConcept C207512268 @default.
- W2022154531 hasConcept C22212356 @default.
- W2022154531 hasConcept C31258907 @default.
- W2022154531 hasConcept C33923547 @default.
- W2022154531 hasConcept C38652104 @default.
- W2022154531 hasConcept C41008148 @default.
- W2022154531 hasConcept C62520636 @default.
- W2022154531 hasConceptScore W2022154531C11413529 @default.
- W2022154531 hasConceptScore W2022154531C121332964 @default.
- W2022154531 hasConceptScore W2022154531C12267149 @default.
- W2022154531 hasConceptScore W2022154531C124101348 @default.
- W2022154531 hasConceptScore W2022154531C126255220 @default.
- W2022154531 hasConceptScore W2022154531C127162648 @default.
- W2022154531 hasConceptScore W2022154531C127413603 @default.
- W2022154531 hasConceptScore W2022154531C154945302 @default.
- W2022154531 hasConceptScore W2022154531C168443057 @default.
- W2022154531 hasConceptScore W2022154531C177264268 @default.
- W2022154531 hasConceptScore W2022154531C199360897 @default.
- W2022154531 hasConceptScore W2022154531C20556612 @default.
- W2022154531 hasConceptScore W2022154531C207512268 @default.
- W2022154531 hasConceptScore W2022154531C22212356 @default.
- W2022154531 hasConceptScore W2022154531C31258907 @default.
- W2022154531 hasConceptScore W2022154531C33923547 @default.
- W2022154531 hasConceptScore W2022154531C38652104 @default.
- W2022154531 hasConceptScore W2022154531C41008148 @default.
- W2022154531 hasConceptScore W2022154531C62520636 @default.
- W2022154531 hasLocation W20221545311 @default.
- W2022154531 hasOpenAccess W2022154531 @default.
- W2022154531 hasPrimaryLocation W20221545311 @default.
- W2022154531 hasRelatedWork W2214235057 @default.
- W2022154531 hasRelatedWork W2350002388 @default.
- W2022154531 hasRelatedWork W2355852453 @default.
- W2022154531 hasRelatedWork W2359750088 @default.
- W2022154531 hasRelatedWork W2361036843 @default.
- W2022154531 hasRelatedWork W2363147776 @default.
- W2022154531 hasRelatedWork W2371149668 @default.
- W2022154531 hasRelatedWork W2372761744 @default.
- W2022154531 hasRelatedWork W2379899158 @default.
- W2022154531 hasRelatedWork W2382412206 @default.
- W2022154531 hasRelatedWork W2389349107 @default.
- W2022154531 hasRelatedWork W2393358290 @default.
- W2022154531 hasRelatedWork W2613937728 @default.
- W2022154531 hasRelatedWork W2761662390 @default.
- W2022154531 hasRelatedWork W2763267279 @default.
- W2022154531 hasRelatedWork W3081852528 @default.
- W2022154531 hasRelatedWork W2820830818 @default.
- W2022154531 hasRelatedWork W2852311182 @default.
- W2022154531 hasRelatedWork W3038852610 @default.
- W2022154531 hasRelatedWork W3085187490 @default.
- W2022154531 isParatext "false" @default.
- W2022154531 isRetracted "false" @default.
- W2022154531 magId "2022154531" @default.
- W2022154531 workType "article" @default.