Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022158839> ?p ?o ?g. }
- W2022158839 endingPage "2636" @default.
- W2022158839 startingPage "2613" @default.
- W2022158839 abstract "Cold-air outbreaks from the polar ice caps or winterly continents over the open ocean lead to organized convection that typically starts as longitudinal roll patterns and changes to cellular patterns in downstream direction. During the field experiments ARKTIS 1991 and ARKTIS 1993, aircraft missions were conducted in 13 cold-air outbreak events over the Greenland and Barents Seas to determine the characteristic parameters of both the mean (primary) flow and the superimposed organized convection (secondary flow). The measurements are classified into four categories with respect to the convective pattern form: longitudinal rolls with small and wider horizontal wavelengths, transitional forms between rolls and cells, and cells. Rolls were observed for boundary layer depths h < 1 km with horizontal wavelengths λ < 5 km and aspect ratios λ/h between 2.6 and 6.5. Distinct cellular structures occurred for h > 1.4 km with λ > 8 km and λ/h between 4 and 12. The amplitudes of the secondary flow-scale variations of the temperature θR, moisture mR, and the longitudinal, uR; transversal, υR; and vertical, wR, wind components were on the order of 0.1–0.4 K, 0.03–0.30 g kg−1, 0.6–2.5 m s−1, 0.8–2.5 m s−1, and 0.4–1.8 m s−1, respectively, generally increasing from the roll to the cell region. The same is true for the ratio uR/υR (from about 0.6 to nearly 1) and for the ratio LmR/cpθR (from 0.7 to more than 2), hinting at increasing importance of moisture processes in the cell compared to the roll region. The importance of the secondary-flow transports of heat and momentum in relation to the total vertical transports increases with height and from rolls to cells. Particularly clear is the vertical profile of the vertical moisture transport mRwR, which exhibits a maximum around cloud base and is on the average related to the surface moisture flux as (mRwR)max = 0.35(m′w′)o. The thermodynamic conditions of the basic flow are characterized by the Rayleigh number Ra, the stability of the capping inversion, and the net condensation rate in the cloud layer. Here Ra is clearly overcritical in the whole cold-air outbreak region; it is around 105 in the roll region and around 2 × 106 in the cell region. The Monin–Obukhov stability parameter does not appear to be suitable measure to distinguish between roll and cell convection. The stability above the boundary layer is about two to three times larger for rolls than for cells. The net condensation in clouds is three times larger in cell than in roll regions and the resulting heating of the boundary layer exceeds that of the surface heat flux in the cell region. The kinematic conditions of the basic flow are characterized by a larger shear of the longitudinal wind component u in the roll than in the cell region. The curvature of the u profile is mostly overcritical in rolls and always subcritical in cells. The secondary flow-scale kinetic energy Ekin,R is related to Ra. The best least squares fit is given by Ekin,R = 3.7Ra0.4." @default.
- W2022158839 created "2016-06-24" @default.
- W2022158839 creator A5073025669 @default.
- W2022158839 date "1999-08-01" @default.
- W2022158839 modified "2023-10-14" @default.
- W2022158839 title "Roll and Cell Convection in Wintertime Arctic Cold-Air Outbreaks" @default.
- W2022158839 cites W1964530368 @default.
- W2022158839 cites W1984239400 @default.
- W2022158839 cites W1986202926 @default.
- W2022158839 cites W1988738832 @default.
- W2022158839 cites W1999667779 @default.
- W2022158839 cites W2005827232 @default.
- W2022158839 cites W2018156372 @default.
- W2022158839 cites W2026534554 @default.
- W2022158839 cites W2040782372 @default.
- W2022158839 cites W2047949295 @default.
- W2022158839 cites W2059335260 @default.
- W2022158839 cites W2067174416 @default.
- W2022158839 cites W2078667120 @default.
- W2022158839 cites W2078672158 @default.
- W2022158839 cites W2081882377 @default.
- W2022158839 cites W2083783709 @default.
- W2022158839 cites W2085058066 @default.
- W2022158839 cites W2088752521 @default.
- W2022158839 cites W2089727804 @default.
- W2022158839 cites W2142227866 @default.
- W2022158839 cites W2160507758 @default.
- W2022158839 cites W2173874791 @default.
- W2022158839 cites W2175098853 @default.
- W2022158839 cites W2175675483 @default.
- W2022158839 cites W2520971936 @default.
- W2022158839 cites W2622310970 @default.
- W2022158839 cites W2523081849 @default.
- W2022158839 doi "https://doi.org/10.1175/1520-0469(1999)056<2613:racciw>2.0.co;2" @default.
- W2022158839 hasPublicationYear "1999" @default.
- W2022158839 type Work @default.
- W2022158839 sameAs 2022158839 @default.
- W2022158839 citedByCount "84" @default.
- W2022158839 countsByYear W20221588392012 @default.
- W2022158839 countsByYear W20221588392013 @default.
- W2022158839 countsByYear W20221588392014 @default.
- W2022158839 countsByYear W20221588392015 @default.
- W2022158839 countsByYear W20221588392016 @default.
- W2022158839 countsByYear W20221588392017 @default.
- W2022158839 countsByYear W20221588392018 @default.
- W2022158839 countsByYear W20221588392019 @default.
- W2022158839 countsByYear W20221588392020 @default.
- W2022158839 countsByYear W20221588392021 @default.
- W2022158839 countsByYear W20221588392022 @default.
- W2022158839 countsByYear W20221588392023 @default.
- W2022158839 crossrefType "journal-article" @default.
- W2022158839 hasAuthorship W2022158839A5073025669 @default.
- W2022158839 hasBestOaLocation W20221588391 @default.
- W2022158839 hasConcept C10899652 @default.
- W2022158839 hasConcept C111603439 @default.
- W2022158839 hasConcept C116067010 @default.
- W2022158839 hasConcept C121332964 @default.
- W2022158839 hasConcept C127313418 @default.
- W2022158839 hasConcept C153294291 @default.
- W2022158839 hasConcept C189234753 @default.
- W2022158839 hasConcept C49204034 @default.
- W2022158839 hasConcept C5072599 @default.
- W2022158839 hasConcept C54791560 @default.
- W2022158839 hasConcept C57654094 @default.
- W2022158839 hasConcept C57879066 @default.
- W2022158839 hasConcept C91586092 @default.
- W2022158839 hasConcept C97355855 @default.
- W2022158839 hasConceptScore W2022158839C10899652 @default.
- W2022158839 hasConceptScore W2022158839C111603439 @default.
- W2022158839 hasConceptScore W2022158839C116067010 @default.
- W2022158839 hasConceptScore W2022158839C121332964 @default.
- W2022158839 hasConceptScore W2022158839C127313418 @default.
- W2022158839 hasConceptScore W2022158839C153294291 @default.
- W2022158839 hasConceptScore W2022158839C189234753 @default.
- W2022158839 hasConceptScore W2022158839C49204034 @default.
- W2022158839 hasConceptScore W2022158839C5072599 @default.
- W2022158839 hasConceptScore W2022158839C54791560 @default.
- W2022158839 hasConceptScore W2022158839C57654094 @default.
- W2022158839 hasConceptScore W2022158839C57879066 @default.
- W2022158839 hasConceptScore W2022158839C91586092 @default.
- W2022158839 hasConceptScore W2022158839C97355855 @default.
- W2022158839 hasIssue "15" @default.
- W2022158839 hasLocation W20221588391 @default.
- W2022158839 hasOpenAccess W2022158839 @default.
- W2022158839 hasPrimaryLocation W20221588391 @default.
- W2022158839 hasRelatedWork W2007769186 @default.
- W2022158839 hasRelatedWork W2011555097 @default.
- W2022158839 hasRelatedWork W2033268973 @default.
- W2022158839 hasRelatedWork W2136669444 @default.
- W2022158839 hasRelatedWork W2151027790 @default.
- W2022158839 hasRelatedWork W2162319241 @default.
- W2022158839 hasRelatedWork W2171995479 @default.
- W2022158839 hasRelatedWork W3151881937 @default.
- W2022158839 hasRelatedWork W599861561 @default.
- W2022158839 hasRelatedWork W872083958 @default.
- W2022158839 hasVolume "56" @default.
- W2022158839 isParatext "false" @default.
- W2022158839 isRetracted "false" @default.