Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022165014> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2022165014 abstract "Low-quality images are usually not only with low-resolution, but also suffer from compression artifacts (blocking artifact is treated as an example in this paper). Directly performing image super-resolution (SR) to a highly compressed (low-quality) image would also simultaneously magnify the blocking artifacts, resulting in unpleasing visual quality. In this paper, we propose a self-learning-based SR framework to simultaneously achieve single-image SR and compression artifact removal for a highly-compressed image. We argue that individually performing deblocking first, followed by SR to an image, would usually inevitably lose some image details induced by deblocking, which may be useful for SR, resulting in worse SR result. In our method, we propose to self-learn image sparse representation for modeling the relationship between low and high-resolution image patches in terms of the learned dictionaries, respectively, for image patches with and without blocking artifacts. As a result, image SR and deblocking can be simultaneously achieved via sparse representation and MCA (morphological component analysis)-based image decomposition. Experimental results demonstrate the efficacy of the proposed algorithm." @default.
- W2022165014 created "2016-06-24" @default.
- W2022165014 creator A5007305393 @default.
- W2022165014 creator A5012962861 @default.
- W2022165014 creator A5021923470 @default.
- W2022165014 creator A5048576414 @default.
- W2022165014 creator A5051264473 @default.
- W2022165014 date "2013-09-01" @default.
- W2022165014 modified "2023-10-18" @default.
- W2022165014 title "Self-learning-based single image super-resolution of a highly compressed image" @default.
- W2022165014 cites W1976416062 @default.
- W2022165014 cites W1991925654 @default.
- W2022165014 cites W2010641531 @default.
- W2022165014 cites W2018942646 @default.
- W2022165014 cites W2056370875 @default.
- W2022165014 cites W2088254198 @default.
- W2022165014 cites W2097074225 @default.
- W2022165014 cites W2121058967 @default.
- W2022165014 cites W2121396509 @default.
- W2022165014 cites W2122086266 @default.
- W2022165014 cites W2124438045 @default.
- W2022165014 cites W2126611844 @default.
- W2022165014 cites W2154666954 @default.
- W2022165014 cites W2160635556 @default.
- W2022165014 cites W2161969291 @default.
- W2022165014 cites W2165939075 @default.
- W2022165014 cites W2167537034 @default.
- W2022165014 cites W2534320940 @default.
- W2022165014 doi "https://doi.org/10.1109/mmsp.2013.6659292" @default.
- W2022165014 hasPublicationYear "2013" @default.
- W2022165014 type Work @default.
- W2022165014 sameAs 2022165014 @default.
- W2022165014 citedByCount "17" @default.
- W2022165014 countsByYear W20221650142014 @default.
- W2022165014 countsByYear W20221650142015 @default.
- W2022165014 countsByYear W20221650142016 @default.
- W2022165014 countsByYear W20221650142017 @default.
- W2022165014 countsByYear W20221650142018 @default.
- W2022165014 countsByYear W20221650142019 @default.
- W2022165014 countsByYear W20221650142022 @default.
- W2022165014 crossrefType "proceedings-article" @default.
- W2022165014 hasAuthorship W2022165014A5007305393 @default.
- W2022165014 hasAuthorship W2022165014A5012962861 @default.
- W2022165014 hasAuthorship W2022165014A5021923470 @default.
- W2022165014 hasAuthorship W2022165014A5048576414 @default.
- W2022165014 hasAuthorship W2022165014A5051264473 @default.
- W2022165014 hasConcept C115961682 @default.
- W2022165014 hasConcept C153180895 @default.
- W2022165014 hasConcept C154945302 @default.
- W2022165014 hasConcept C31972630 @default.
- W2022165014 hasConcept C41008148 @default.
- W2022165014 hasConceptScore W2022165014C115961682 @default.
- W2022165014 hasConceptScore W2022165014C153180895 @default.
- W2022165014 hasConceptScore W2022165014C154945302 @default.
- W2022165014 hasConceptScore W2022165014C31972630 @default.
- W2022165014 hasConceptScore W2022165014C41008148 @default.
- W2022165014 hasLocation W20221650141 @default.
- W2022165014 hasOpenAccess W2022165014 @default.
- W2022165014 hasPrimaryLocation W20221650141 @default.
- W2022165014 hasRelatedWork W2005185696 @default.
- W2022165014 hasRelatedWork W2092957489 @default.
- W2022165014 hasRelatedWork W2130228941 @default.
- W2022165014 hasRelatedWork W2132132164 @default.
- W2022165014 hasRelatedWork W2161229648 @default.
- W2022165014 hasRelatedWork W2235753890 @default.
- W2022165014 hasRelatedWork W2314419244 @default.
- W2022165014 hasRelatedWork W2366116130 @default.
- W2022165014 hasRelatedWork W2889893736 @default.
- W2022165014 hasRelatedWork W2993674027 @default.
- W2022165014 isParatext "false" @default.
- W2022165014 isRetracted "false" @default.
- W2022165014 magId "2022165014" @default.
- W2022165014 workType "article" @default.