Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022165478> ?p ?o ?g. }
- W2022165478 endingPage "211" @default.
- W2022165478 startingPage "187" @default.
- W2022165478 abstract "Semiparametric proportional hazard regression models are the cornerstone in modern survival analysis. Most estimation methodologies developed in the literature, such as the famous partial likelihood based estimation, are built on the ground that the censoring is noninformative. However, in many applications, the censoring is indeed informative. In this paper, we study the survival regression models with an informative censoring that is easy to detect and apply. A very important problem in practice is how to estimate the survival models more efficiently with the information from the informative censoring. We propose a semiparametric maximum likelihood approach that is easily implementable to estimate both the nonparametric baseline hazard and the parametric coefficients in the survival models with informative censoring. Different from the methods in the literature, we do not apply least informative approach to the baseline, which does not work well in our simulation. We solve the difficulty in semiparametric estimation by suggesting an indirect application of local kernel smoothing to the baseline. Asymptotic theory of the proposed estimators is established under informative and noninformative likelihoods, respectively. We suggest a cross-validation method to detect the informative censoring in application. The performances of the estimators in finite samples are investigated by Monte Carlo simulation. Both asymptotic theory and simulation show that the suggested semiparametric approach provides more efficient estimators of the parameters for informative censoring, and estimates the baseline function accurately. The proposed method is applied to analyse the data about the infants hospitalised for pneumonia, which leads to interesting findings." @default.
- W2022165478 created "2016-06-24" @default.
- W2022165478 creator A5022214887 @default.
- W2022165478 creator A5046137319 @default.
- W2022165478 date "2012-04-01" @default.
- W2022165478 modified "2023-09-26" @default.
- W2022165478 title "Semiparametric likelihood estimation in survival models with informative censoring" @default.
- W2022165478 cites W1507108780 @default.
- W2022165478 cites W1580788756 @default.
- W2022165478 cites W1597926580 @default.
- W2022165478 cites W1972733151 @default.
- W2022165478 cites W1984445168 @default.
- W2022165478 cites W1985864849 @default.
- W2022165478 cites W1987893388 @default.
- W2022165478 cites W1995738794 @default.
- W2022165478 cites W2002869784 @default.
- W2022165478 cites W2021438475 @default.
- W2022165478 cites W2025991284 @default.
- W2022165478 cites W2026349267 @default.
- W2022165478 cites W2033148801 @default.
- W2022165478 cites W2039944302 @default.
- W2022165478 cites W2045901075 @default.
- W2022165478 cites W2046249327 @default.
- W2022165478 cites W2057868807 @default.
- W2022165478 cites W2059126764 @default.
- W2022165478 cites W2063945880 @default.
- W2022165478 cites W2065230098 @default.
- W2022165478 cites W2066380011 @default.
- W2022165478 cites W2067960722 @default.
- W2022165478 cites W2074834989 @default.
- W2022165478 cites W2076376972 @default.
- W2022165478 cites W2081806742 @default.
- W2022165478 cites W2086067392 @default.
- W2022165478 cites W2086680598 @default.
- W2022165478 cites W2086924664 @default.
- W2022165478 cites W2094607565 @default.
- W2022165478 cites W2106161928 @default.
- W2022165478 cites W2113037782 @default.
- W2022165478 cites W2114229287 @default.
- W2022165478 cites W2509991828 @default.
- W2022165478 cites W2797333853 @default.
- W2022165478 cites W2797583072 @default.
- W2022165478 cites W3020932223 @default.
- W2022165478 cites W3100563284 @default.
- W2022165478 cites W3102451661 @default.
- W2022165478 cites W3103403033 @default.
- W2022165478 doi "https://doi.org/10.1016/j.jmva.2011.10.010" @default.
- W2022165478 hasPublicationYear "2012" @default.
- W2022165478 type Work @default.
- W2022165478 sameAs 2022165478 @default.
- W2022165478 citedByCount "5" @default.
- W2022165478 countsByYear W20221654782015 @default.
- W2022165478 countsByYear W20221654782017 @default.
- W2022165478 countsByYear W20221654782020 @default.
- W2022165478 countsByYear W20221654782023 @default.
- W2022165478 crossrefType "journal-article" @default.
- W2022165478 hasAuthorship W2022165478A5022214887 @default.
- W2022165478 hasAuthorship W2022165478A5046137319 @default.
- W2022165478 hasBestOaLocation W20221654781 @default.
- W2022165478 hasConcept C102366305 @default.
- W2022165478 hasConcept C105795698 @default.
- W2022165478 hasConcept C117251300 @default.
- W2022165478 hasConcept C122280245 @default.
- W2022165478 hasConcept C12267149 @default.
- W2022165478 hasConcept C137668524 @default.
- W2022165478 hasConcept C149782125 @default.
- W2022165478 hasConcept C154945302 @default.
- W2022165478 hasConcept C185429906 @default.
- W2022165478 hasConcept C19539793 @default.
- W2022165478 hasConcept C204016326 @default.
- W2022165478 hasConcept C27406209 @default.
- W2022165478 hasConcept C33114746 @default.
- W2022165478 hasConcept C33923547 @default.
- W2022165478 hasConcept C41008148 @default.
- W2022165478 hasConcept C50382708 @default.
- W2022165478 hasConcept C75866337 @default.
- W2022165478 hasConcept C78297888 @default.
- W2022165478 hasConcept C97379794 @default.
- W2022165478 hasConceptScore W2022165478C102366305 @default.
- W2022165478 hasConceptScore W2022165478C105795698 @default.
- W2022165478 hasConceptScore W2022165478C117251300 @default.
- W2022165478 hasConceptScore W2022165478C122280245 @default.
- W2022165478 hasConceptScore W2022165478C12267149 @default.
- W2022165478 hasConceptScore W2022165478C137668524 @default.
- W2022165478 hasConceptScore W2022165478C149782125 @default.
- W2022165478 hasConceptScore W2022165478C154945302 @default.
- W2022165478 hasConceptScore W2022165478C185429906 @default.
- W2022165478 hasConceptScore W2022165478C19539793 @default.
- W2022165478 hasConceptScore W2022165478C204016326 @default.
- W2022165478 hasConceptScore W2022165478C27406209 @default.
- W2022165478 hasConceptScore W2022165478C33114746 @default.
- W2022165478 hasConceptScore W2022165478C33923547 @default.
- W2022165478 hasConceptScore W2022165478C41008148 @default.
- W2022165478 hasConceptScore W2022165478C50382708 @default.
- W2022165478 hasConceptScore W2022165478C75866337 @default.
- W2022165478 hasConceptScore W2022165478C78297888 @default.
- W2022165478 hasConceptScore W2022165478C97379794 @default.
- W2022165478 hasLocation W20221654781 @default.