Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022166137> ?p ?o ?g. }
- W2022166137 abstract "Load forecasting is very essential for the efficient and reliable operation of a power system. Often uncertainties significantly decrease the prediction accuracy of load forecasting; this in turn affects the operation cost dramatically as well as the optimal day-to-day operation of the power system. In this article, an overview of recently published work on hybrid neural network techniques to forecast the electrical load demand. A hybrid neural network forecasting model is proposed, which is a combination of simulated annealing (SA) and particle swarm optimization (PSO) called SAPSO. In proposed techniqiue, particle swarm optimization (PSO) algorithm has the ability of global optimization and the simulated annealing (SA) algorithm has a strong searching capability. Therefore, the learning algorithm of a typical three layer feed forward neural network back propagation (BP) is replaced by SAPSO algorithm. Furthermore, preprocessing of input data, convergence, local minima and working of neural network with SAPSO algorithm also discussed." @default.
- W2022166137 created "2016-06-24" @default.
- W2022166137 creator A5073983570 @default.
- W2022166137 creator A5085203898 @default.
- W2022166137 date "2012-12-01" @default.
- W2022166137 modified "2023-10-16" @default.
- W2022166137 title "A review on short term load forecasting using hybrid neural network techniques" @default.
- W2022166137 cites W1498436455 @default.
- W2022166137 cites W1964984358 @default.
- W2022166137 cites W1976221999 @default.
- W2022166137 cites W1992320635 @default.
- W2022166137 cites W2008371008 @default.
- W2022166137 cites W2010448349 @default.
- W2022166137 cites W2017561014 @default.
- W2022166137 cites W2048764852 @default.
- W2022166137 cites W2075795701 @default.
- W2022166137 cites W2085408106 @default.
- W2022166137 cites W2093303280 @default.
- W2022166137 cites W2094864291 @default.
- W2022166137 cites W2095731600 @default.
- W2022166137 cites W2107676921 @default.
- W2022166137 cites W2109364787 @default.
- W2022166137 cites W2109779026 @default.
- W2022166137 cites W2109983664 @default.
- W2022166137 cites W2117915583 @default.
- W2022166137 cites W2120538766 @default.
- W2022166137 cites W2132421074 @default.
- W2022166137 cites W2132967609 @default.
- W2022166137 cites W2133514149 @default.
- W2022166137 cites W2133720763 @default.
- W2022166137 cites W2136141373 @default.
- W2022166137 cites W2136397325 @default.
- W2022166137 cites W2142168021 @default.
- W2022166137 cites W2143451729 @default.
- W2022166137 cites W2144614142 @default.
- W2022166137 cites W2148165665 @default.
- W2022166137 cites W2155816288 @default.
- W2022166137 cites W2156026941 @default.
- W2022166137 cites W2164083776 @default.
- W2022166137 cites W2168138569 @default.
- W2022166137 cites W2169245194 @default.
- W2022166137 cites W2169262868 @default.
- W2022166137 cites W2171697319 @default.
- W2022166137 cites W2535780985 @default.
- W2022166137 doi "https://doi.org/10.1109/pecon.2012.6450336" @default.
- W2022166137 hasPublicationYear "2012" @default.
- W2022166137 type Work @default.
- W2022166137 sameAs 2022166137 @default.
- W2022166137 citedByCount "18" @default.
- W2022166137 countsByYear W20221661372014 @default.
- W2022166137 countsByYear W20221661372015 @default.
- W2022166137 countsByYear W20221661372016 @default.
- W2022166137 countsByYear W20221661372017 @default.
- W2022166137 countsByYear W20221661372018 @default.
- W2022166137 countsByYear W20221661372019 @default.
- W2022166137 countsByYear W20221661372020 @default.
- W2022166137 countsByYear W20221661372021 @default.
- W2022166137 crossrefType "proceedings-article" @default.
- W2022166137 hasAuthorship W2022166137A5073983570 @default.
- W2022166137 hasAuthorship W2022166137A5085203898 @default.
- W2022166137 hasConcept C11413529 @default.
- W2022166137 hasConcept C121332964 @default.
- W2022166137 hasConcept C126255220 @default.
- W2022166137 hasConcept C126980161 @default.
- W2022166137 hasConcept C134306372 @default.
- W2022166137 hasConcept C154945302 @default.
- W2022166137 hasConcept C155032097 @default.
- W2022166137 hasConcept C162324750 @default.
- W2022166137 hasConcept C163258240 @default.
- W2022166137 hasConcept C176783269 @default.
- W2022166137 hasConcept C186633575 @default.
- W2022166137 hasConcept C2777303404 @default.
- W2022166137 hasConcept C33923547 @default.
- W2022166137 hasConcept C34736171 @default.
- W2022166137 hasConcept C41008148 @default.
- W2022166137 hasConcept C44616089 @default.
- W2022166137 hasConcept C49937458 @default.
- W2022166137 hasConcept C50522688 @default.
- W2022166137 hasConcept C50644808 @default.
- W2022166137 hasConcept C61797465 @default.
- W2022166137 hasConcept C62469222 @default.
- W2022166137 hasConcept C62520636 @default.
- W2022166137 hasConcept C85617194 @default.
- W2022166137 hasConcept C89227174 @default.
- W2022166137 hasConceptScore W2022166137C11413529 @default.
- W2022166137 hasConceptScore W2022166137C121332964 @default.
- W2022166137 hasConceptScore W2022166137C126255220 @default.
- W2022166137 hasConceptScore W2022166137C126980161 @default.
- W2022166137 hasConceptScore W2022166137C134306372 @default.
- W2022166137 hasConceptScore W2022166137C154945302 @default.
- W2022166137 hasConceptScore W2022166137C155032097 @default.
- W2022166137 hasConceptScore W2022166137C162324750 @default.
- W2022166137 hasConceptScore W2022166137C163258240 @default.
- W2022166137 hasConceptScore W2022166137C176783269 @default.
- W2022166137 hasConceptScore W2022166137C186633575 @default.
- W2022166137 hasConceptScore W2022166137C2777303404 @default.
- W2022166137 hasConceptScore W2022166137C33923547 @default.
- W2022166137 hasConceptScore W2022166137C34736171 @default.
- W2022166137 hasConceptScore W2022166137C41008148 @default.
- W2022166137 hasConceptScore W2022166137C44616089 @default.