Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022173618> ?p ?o ?g. }
- W2022173618 endingPage "491" @default.
- W2022173618 startingPage "459" @default.
- W2022173618 abstract "Various algorithms for constructing weight matrices for Hopfield-type associative memories are reviewed, including ones with much higher capacity than the basic model. These alternative algorithms either iteratively approximate the projection weight matrix or use simple perceptron learning. An experimental investigation of the performance of networks trained by these algorithms is presented, including measurements of capacity, training time and their ability to correct corrupted versions of the training patterns." @default.
- W2022173618 created "2016-06-24" @default.
- W2022173618 creator A5017981647 @default.
- W2022173618 creator A5050002935 @default.
- W2022173618 creator A5059243386 @default.
- W2022173618 date "2004-12-01" @default.
- W2022173618 modified "2023-09-27" @default.
- W2022173618 title "High capacity recurrent associative memories" @default.
- W2022173618 cites W1575487962 @default.
- W2022173618 cites W1971873204 @default.
- W2022173618 cites W1995539593 @default.
- W2022173618 cites W2002925553 @default.
- W2022173618 cites W2007260471 @default.
- W2022173618 cites W2030450972 @default.
- W2022173618 cites W2033788889 @default.
- W2022173618 cites W2039120540 @default.
- W2022173618 cites W2043702957 @default.
- W2022173618 cites W2048442032 @default.
- W2022173618 cites W2054882585 @default.
- W2022173618 cites W2055837680 @default.
- W2022173618 cites W2056735445 @default.
- W2022173618 cites W2059994748 @default.
- W2022173618 cites W2068719667 @default.
- W2022173618 cites W2075906006 @default.
- W2022173618 cites W2076711404 @default.
- W2022173618 cites W2092029800 @default.
- W2022173618 cites W2123481630 @default.
- W2022173618 cites W2127098738 @default.
- W2022173618 cites W2128084896 @default.
- W2022173618 cites W2128687162 @default.
- W2022173618 cites W2134545475 @default.
- W2022173618 cites W2142639015 @default.
- W2022173618 cites W2161278885 @default.
- W2022173618 cites W2165816199 @default.
- W2022173618 cites W4211250121 @default.
- W2022173618 cites W4232171278 @default.
- W2022173618 cites W1981215193 @default.
- W2022173618 cites W3147726452 @default.
- W2022173618 doi "https://doi.org/10.1016/j.neucom.2004.02.007" @default.
- W2022173618 hasPublicationYear "2004" @default.
- W2022173618 type Work @default.
- W2022173618 sameAs 2022173618 @default.
- W2022173618 citedByCount "35" @default.
- W2022173618 countsByYear W20221736182013 @default.
- W2022173618 countsByYear W20221736182014 @default.
- W2022173618 countsByYear W20221736182015 @default.
- W2022173618 countsByYear W20221736182016 @default.
- W2022173618 countsByYear W20221736182017 @default.
- W2022173618 countsByYear W20221736182019 @default.
- W2022173618 countsByYear W20221736182020 @default.
- W2022173618 countsByYear W20221736182022 @default.
- W2022173618 countsByYear W20221736182023 @default.
- W2022173618 crossrefType "journal-article" @default.
- W2022173618 hasAuthorship W2022173618A5017981647 @default.
- W2022173618 hasAuthorship W2022173618A5050002935 @default.
- W2022173618 hasAuthorship W2022173618A5059243386 @default.
- W2022173618 hasConcept C106487976 @default.
- W2022173618 hasConcept C111472728 @default.
- W2022173618 hasConcept C11413529 @default.
- W2022173618 hasConcept C119857082 @default.
- W2022173618 hasConcept C120620853 @default.
- W2022173618 hasConcept C138885662 @default.
- W2022173618 hasConcept C147168706 @default.
- W2022173618 hasConcept C153180895 @default.
- W2022173618 hasConcept C154945302 @default.
- W2022173618 hasConcept C159423971 @default.
- W2022173618 hasConcept C159985019 @default.
- W2022173618 hasConcept C192562407 @default.
- W2022173618 hasConcept C202444582 @default.
- W2022173618 hasConcept C2780586882 @default.
- W2022173618 hasConcept C33923547 @default.
- W2022173618 hasConcept C41008148 @default.
- W2022173618 hasConcept C46421273 @default.
- W2022173618 hasConcept C50644808 @default.
- W2022173618 hasConcept C53442348 @default.
- W2022173618 hasConcept C57493831 @default.
- W2022173618 hasConcept C60908668 @default.
- W2022173618 hasConcept C80444323 @default.
- W2022173618 hasConceptScore W2022173618C106487976 @default.
- W2022173618 hasConceptScore W2022173618C111472728 @default.
- W2022173618 hasConceptScore W2022173618C11413529 @default.
- W2022173618 hasConceptScore W2022173618C119857082 @default.
- W2022173618 hasConceptScore W2022173618C120620853 @default.
- W2022173618 hasConceptScore W2022173618C138885662 @default.
- W2022173618 hasConceptScore W2022173618C147168706 @default.
- W2022173618 hasConceptScore W2022173618C153180895 @default.
- W2022173618 hasConceptScore W2022173618C154945302 @default.
- W2022173618 hasConceptScore W2022173618C159423971 @default.
- W2022173618 hasConceptScore W2022173618C159985019 @default.
- W2022173618 hasConceptScore W2022173618C192562407 @default.
- W2022173618 hasConceptScore W2022173618C202444582 @default.
- W2022173618 hasConceptScore W2022173618C2780586882 @default.
- W2022173618 hasConceptScore W2022173618C33923547 @default.
- W2022173618 hasConceptScore W2022173618C41008148 @default.
- W2022173618 hasConceptScore W2022173618C46421273 @default.
- W2022173618 hasConceptScore W2022173618C50644808 @default.
- W2022173618 hasConceptScore W2022173618C53442348 @default.
- W2022173618 hasConceptScore W2022173618C57493831 @default.