Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022174985> ?p ?o ?g. }
- W2022174985 endingPage "10217" @default.
- W2022174985 startingPage "10210" @default.
- W2022174985 abstract "The purpose of this study is to design a model to predict financial health of companies. Financial ratios for 180 manufacturing companies quoted in Tehran Stock Exchange for one year (year ended March 21, 2008) have been used. Three models; based on artificial neural networks (ANN), genetic algorithm (GA), and multiple discriminant analysis (MDA) are utilized to classify the bankrupt from non bankrupt corporations. ANN model achieved 98.6% and 96.3% accuracy rates in training and holdout samples, respectively. To evaluate the reliability of the model, the data were examined with genetic algorithm and Multivariate discriminate analysis method. GA model attained only 92.5% and 91.5% accuracy rates and MDA reached 80.6% and 79.9 in training and holdout samples, respectively." @default.
- W2022174985 created "2016-06-24" @default.
- W2022174985 creator A5014841520 @default.
- W2022174985 creator A5047237747 @default.
- W2022174985 creator A5058588943 @default.
- W2022174985 date "2011-08-01" @default.
- W2022174985 modified "2023-10-17" @default.
- W2022174985 title "Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence" @default.
- W2022174985 cites W1967337608 @default.
- W2022174985 cites W1968182870 @default.
- W2022174985 cites W1988221687 @default.
- W2022174985 cites W1989869972 @default.
- W2022174985 cites W1994102621 @default.
- W2022174985 cites W2005971019 @default.
- W2022174985 cites W2011414287 @default.
- W2022174985 cites W2016207894 @default.
- W2022174985 cites W2020848494 @default.
- W2022174985 cites W2072070605 @default.
- W2022174985 cites W2089939190 @default.
- W2022174985 cites W2092543866 @default.
- W2022174985 cites W2124532504 @default.
- W2022174985 cites W2133218851 @default.
- W2022174985 cites W2165035706 @default.
- W2022174985 cites W3123800628 @default.
- W2022174985 cites W4231149697 @default.
- W2022174985 doi "https://doi.org/10.1016/j.eswa.2011.02.082" @default.
- W2022174985 hasPublicationYear "2011" @default.
- W2022174985 type Work @default.
- W2022174985 sameAs 2022174985 @default.
- W2022174985 citedByCount "69" @default.
- W2022174985 countsByYear W20221749852012 @default.
- W2022174985 countsByYear W20221749852013 @default.
- W2022174985 countsByYear W20221749852014 @default.
- W2022174985 countsByYear W20221749852015 @default.
- W2022174985 countsByYear W20221749852016 @default.
- W2022174985 countsByYear W20221749852017 @default.
- W2022174985 countsByYear W20221749852018 @default.
- W2022174985 countsByYear W20221749852019 @default.
- W2022174985 countsByYear W20221749852020 @default.
- W2022174985 countsByYear W20221749852021 @default.
- W2022174985 countsByYear W20221749852022 @default.
- W2022174985 countsByYear W20221749852023 @default.
- W2022174985 crossrefType "journal-article" @default.
- W2022174985 hasAuthorship W2022174985A5014841520 @default.
- W2022174985 hasAuthorship W2022174985A5047237747 @default.
- W2022174985 hasAuthorship W2022174985A5058588943 @default.
- W2022174985 hasConcept C10138342 @default.
- W2022174985 hasConcept C105795698 @default.
- W2022174985 hasConcept C11413529 @default.
- W2022174985 hasConcept C119857082 @default.
- W2022174985 hasConcept C121332964 @default.
- W2022174985 hasConcept C124101348 @default.
- W2022174985 hasConcept C154945302 @default.
- W2022174985 hasConcept C161584116 @default.
- W2022174985 hasConcept C162324750 @default.
- W2022174985 hasConcept C163258240 @default.
- W2022174985 hasConcept C200870193 @default.
- W2022174985 hasConcept C33923547 @default.
- W2022174985 hasConcept C38180746 @default.
- W2022174985 hasConcept C41008148 @default.
- W2022174985 hasConcept C43214815 @default.
- W2022174985 hasConcept C50644808 @default.
- W2022174985 hasConcept C62520636 @default.
- W2022174985 hasConcept C69738355 @default.
- W2022174985 hasConcept C78397625 @default.
- W2022174985 hasConcept C8880873 @default.
- W2022174985 hasConceptScore W2022174985C10138342 @default.
- W2022174985 hasConceptScore W2022174985C105795698 @default.
- W2022174985 hasConceptScore W2022174985C11413529 @default.
- W2022174985 hasConceptScore W2022174985C119857082 @default.
- W2022174985 hasConceptScore W2022174985C121332964 @default.
- W2022174985 hasConceptScore W2022174985C124101348 @default.
- W2022174985 hasConceptScore W2022174985C154945302 @default.
- W2022174985 hasConceptScore W2022174985C161584116 @default.
- W2022174985 hasConceptScore W2022174985C162324750 @default.
- W2022174985 hasConceptScore W2022174985C163258240 @default.
- W2022174985 hasConceptScore W2022174985C200870193 @default.
- W2022174985 hasConceptScore W2022174985C33923547 @default.
- W2022174985 hasConceptScore W2022174985C38180746 @default.
- W2022174985 hasConceptScore W2022174985C41008148 @default.
- W2022174985 hasConceptScore W2022174985C43214815 @default.
- W2022174985 hasConceptScore W2022174985C50644808 @default.
- W2022174985 hasConceptScore W2022174985C62520636 @default.
- W2022174985 hasConceptScore W2022174985C69738355 @default.
- W2022174985 hasConceptScore W2022174985C78397625 @default.
- W2022174985 hasConceptScore W2022174985C8880873 @default.
- W2022174985 hasIssue "8" @default.
- W2022174985 hasLocation W20221749851 @default.
- W2022174985 hasOpenAccess W2022174985 @default.
- W2022174985 hasPrimaryLocation W20221749851 @default.
- W2022174985 hasRelatedWork W2053426240 @default.
- W2022174985 hasRelatedWork W2058669049 @default.
- W2022174985 hasRelatedWork W2071137593 @default.
- W2022174985 hasRelatedWork W2129945984 @default.
- W2022174985 hasRelatedWork W2281274879 @default.
- W2022174985 hasRelatedWork W2402900412 @default.
- W2022174985 hasRelatedWork W2407459949 @default.
- W2022174985 hasRelatedWork W2412304167 @default.