Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022178019> ?p ?o ?g. }
- W2022178019 endingPage "649" @default.
- W2022178019 startingPage "635" @default.
- W2022178019 abstract "It is commonly accepted that certain financial data exhibit long-range dependence. We consider a continuous-time stochastic volatility model in which the stock price is Geometric Brownian Motion with volatility described by a fractional Ornstein–Uhlenbeck process. We also study two discrete-time models: a discretization of the continuous model via a Euler scheme and a discrete model in which the returns are a zero mean i.i.d. sequence where the volatility is a fractional ARIMA process. We implement a particle filtering algorithm to estimate the empirical distribution of the unobserved volatility, which we then use in the construction of a multinomial recombining tree for option pricing. We also discuss appropriate parameter estimation techniques for each model. For the long-memory parameter we compute an implied value by calibrating the model with real data. We compare the performance of the three models using simulated data and we price options on the S&P 500 index." @default.
- W2022178019 created "2016-06-24" @default.
- W2022178019 creator A5017553029 @default.
- W2022178019 creator A5033321277 @default.
- W2022178019 date "2012-04-01" @default.
- W2022178019 modified "2023-09-27" @default.
- W2022178019 title "Stochastic volatility and option pricing with long-memory in discrete and continuous time" @default.
- W2022178019 cites W1969960895 @default.
- W2022178019 cites W1973694910 @default.
- W2022178019 cites W1976020937 @default.
- W2022178019 cites W1991761850 @default.
- W2022178019 cites W1992598907 @default.
- W2022178019 cites W1999996900 @default.
- W2022178019 cites W2000088897 @default.
- W2022178019 cites W2001772055 @default.
- W2022178019 cites W2005424182 @default.
- W2022178019 cites W2011586511 @default.
- W2022178019 cites W2013134717 @default.
- W2022178019 cites W2014515514 @default.
- W2022178019 cites W2025006397 @default.
- W2022178019 cites W2055781590 @default.
- W2022178019 cites W2075184575 @default.
- W2022178019 cites W2077791698 @default.
- W2022178019 cites W2083409253 @default.
- W2022178019 cites W2083865111 @default.
- W2022178019 cites W2093161842 @default.
- W2022178019 cites W2139395482 @default.
- W2022178019 cites W2225574294 @default.
- W2022178019 cites W2341760625 @default.
- W2022178019 cites W2890265597 @default.
- W2022178019 cites W3125863044 @default.
- W2022178019 cites W4231057775 @default.
- W2022178019 cites W4232670912 @default.
- W2022178019 cites W4236751433 @default.
- W2022178019 cites W4241115065 @default.
- W2022178019 doi "https://doi.org/10.1080/14697688.2012.664939" @default.
- W2022178019 hasPublicationYear "2012" @default.
- W2022178019 type Work @default.
- W2022178019 sameAs 2022178019 @default.
- W2022178019 citedByCount "53" @default.
- W2022178019 countsByYear W20221780192013 @default.
- W2022178019 countsByYear W20221780192014 @default.
- W2022178019 countsByYear W20221780192015 @default.
- W2022178019 countsByYear W20221780192016 @default.
- W2022178019 countsByYear W20221780192017 @default.
- W2022178019 countsByYear W20221780192018 @default.
- W2022178019 countsByYear W20221780192019 @default.
- W2022178019 countsByYear W20221780192020 @default.
- W2022178019 countsByYear W20221780192021 @default.
- W2022178019 countsByYear W20221780192022 @default.
- W2022178019 countsByYear W20221780192023 @default.
- W2022178019 crossrefType "journal-article" @default.
- W2022178019 hasAuthorship W2022178019A5017553029 @default.
- W2022178019 hasAuthorship W2022178019A5033321277 @default.
- W2022178019 hasBestOaLocation W20221780192 @default.
- W2022178019 hasConcept C101615488 @default.
- W2022178019 hasConcept C105795698 @default.
- W2022178019 hasConcept C108819105 @default.
- W2022178019 hasConcept C112401455 @default.
- W2022178019 hasConcept C13290067 @default.
- W2022178019 hasConcept C134306372 @default.
- W2022178019 hasConcept C136264566 @default.
- W2022178019 hasConcept C149782125 @default.
- W2022178019 hasConcept C162324750 @default.
- W2022178019 hasConcept C187625094 @default.
- W2022178019 hasConcept C192065140 @default.
- W2022178019 hasConcept C194483076 @default.
- W2022178019 hasConcept C24189920 @default.
- W2022178019 hasConcept C2780378061 @default.
- W2022178019 hasConcept C28826006 @default.
- W2022178019 hasConcept C33923547 @default.
- W2022178019 hasConcept C55689738 @default.
- W2022178019 hasConcept C68710425 @default.
- W2022178019 hasConcept C73000952 @default.
- W2022178019 hasConcept C85393063 @default.
- W2022178019 hasConcept C91602232 @default.
- W2022178019 hasConcept C93045229 @default.
- W2022178019 hasConceptScore W2022178019C101615488 @default.
- W2022178019 hasConceptScore W2022178019C105795698 @default.
- W2022178019 hasConceptScore W2022178019C108819105 @default.
- W2022178019 hasConceptScore W2022178019C112401455 @default.
- W2022178019 hasConceptScore W2022178019C13290067 @default.
- W2022178019 hasConceptScore W2022178019C134306372 @default.
- W2022178019 hasConceptScore W2022178019C136264566 @default.
- W2022178019 hasConceptScore W2022178019C149782125 @default.
- W2022178019 hasConceptScore W2022178019C162324750 @default.
- W2022178019 hasConceptScore W2022178019C187625094 @default.
- W2022178019 hasConceptScore W2022178019C192065140 @default.
- W2022178019 hasConceptScore W2022178019C194483076 @default.
- W2022178019 hasConceptScore W2022178019C24189920 @default.
- W2022178019 hasConceptScore W2022178019C2780378061 @default.
- W2022178019 hasConceptScore W2022178019C28826006 @default.
- W2022178019 hasConceptScore W2022178019C33923547 @default.
- W2022178019 hasConceptScore W2022178019C55689738 @default.
- W2022178019 hasConceptScore W2022178019C68710425 @default.
- W2022178019 hasConceptScore W2022178019C73000952 @default.
- W2022178019 hasConceptScore W2022178019C85393063 @default.
- W2022178019 hasConceptScore W2022178019C91602232 @default.