Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022180101> ?p ?o ?g. }
- W2022180101 endingPage "23" @default.
- W2022180101 startingPage "1" @default.
- W2022180101 abstract "Land cover transformation is one of the foremost aspects of human-induced environmental change, having an extensive history dating back to antiquity. The present study aims to simulate the process of land cover change based on different policy-based scenarios so as to provide a basis for sustainable development in Doon valley, India. For this purpose, an artificial neural network-based spatial predictive model was developed for the Doon valley. The predictive model generated future land cover patterns under three policy scenarios, i.e. baseline scenario, compact growth scenario and hierarchical growth scenario (HGS). The simulated land cover patterns mirror where land cover patterns are headed in the valley by year 2021. The result suggests that unabated continuation of the present pattern of land cover transformation will result in a regional imbalance. However, this skewed development can be corrected by altering the current growth trend as revealed in the compact growth and HGSs." @default.
- W2022180101 created "2016-06-24" @default.
- W2022180101 creator A5056334819 @default.
- W2022180101 date "2014-07-24" @default.
- W2022180101 modified "2023-10-03" @default.
- W2022180101 title "Neural networks-based simulation of land cover scenarios in Doon valley, India" @default.
- W2022180101 cites W1498436455 @default.
- W2022180101 cites W1536340909 @default.
- W2022180101 cites W1965865770 @default.
- W2022180101 cites W1976845186 @default.
- W2022180101 cites W1988510208 @default.
- W2022180101 cites W1993666473 @default.
- W2022180101 cites W1994688232 @default.
- W2022180101 cites W2008746316 @default.
- W2022180101 cites W2018612134 @default.
- W2022180101 cites W2023201792 @default.
- W2022180101 cites W2025869667 @default.
- W2022180101 cites W2032568597 @default.
- W2022180101 cites W2047096735 @default.
- W2022180101 cites W2054431286 @default.
- W2022180101 cites W2060525038 @default.
- W2022180101 cites W2091720785 @default.
- W2022180101 cites W2094254128 @default.
- W2022180101 cites W2099908874 @default.
- W2022180101 cites W2100459552 @default.
- W2022180101 cites W2108981219 @default.
- W2022180101 cites W2111991669 @default.
- W2022180101 cites W2128964295 @default.
- W2022180101 cites W2130269771 @default.
- W2022180101 cites W2134721717 @default.
- W2022180101 cites W2135617432 @default.
- W2022180101 cites W2135822449 @default.
- W2022180101 cites W2138358264 @default.
- W2022180101 cites W2138973222 @default.
- W2022180101 cites W2148582446 @default.
- W2022180101 cites W2156484217 @default.
- W2022180101 cites W2158576674 @default.
- W2022180101 cites W2161835209 @default.
- W2022180101 cites W2165713677 @default.
- W2022180101 cites W2170701747 @default.
- W2022180101 cites W2172009270 @default.
- W2022180101 cites W4237562590 @default.
- W2022180101 cites W4300125312 @default.
- W2022180101 doi "https://doi.org/10.1080/10106049.2014.927535" @default.
- W2022180101 hasPublicationYear "2014" @default.
- W2022180101 type Work @default.
- W2022180101 sameAs 2022180101 @default.
- W2022180101 citedByCount "13" @default.
- W2022180101 countsByYear W20221801012017 @default.
- W2022180101 countsByYear W20221801012018 @default.
- W2022180101 countsByYear W20221801012019 @default.
- W2022180101 countsByYear W20221801012020 @default.
- W2022180101 countsByYear W20221801012021 @default.
- W2022180101 countsByYear W20221801012022 @default.
- W2022180101 countsByYear W20221801012023 @default.
- W2022180101 crossrefType "journal-article" @default.
- W2022180101 hasAuthorship W2022180101A5056334819 @default.
- W2022180101 hasConcept C100970517 @default.
- W2022180101 hasConcept C104317684 @default.
- W2022180101 hasConcept C107826830 @default.
- W2022180101 hasConcept C111368507 @default.
- W2022180101 hasConcept C12725497 @default.
- W2022180101 hasConcept C127313418 @default.
- W2022180101 hasConcept C127413603 @default.
- W2022180101 hasConcept C147176958 @default.
- W2022180101 hasConcept C154945302 @default.
- W2022180101 hasConcept C185592680 @default.
- W2022180101 hasConcept C204241405 @default.
- W2022180101 hasConcept C205649164 @default.
- W2022180101 hasConcept C2780428219 @default.
- W2022180101 hasConcept C2780648208 @default.
- W2022180101 hasConcept C39432304 @default.
- W2022180101 hasConcept C41008148 @default.
- W2022180101 hasConcept C4792198 @default.
- W2022180101 hasConcept C50644808 @default.
- W2022180101 hasConcept C55493867 @default.
- W2022180101 hasConcept C58640448 @default.
- W2022180101 hasConcept C78519656 @default.
- W2022180101 hasConceptScore W2022180101C100970517 @default.
- W2022180101 hasConceptScore W2022180101C104317684 @default.
- W2022180101 hasConceptScore W2022180101C107826830 @default.
- W2022180101 hasConceptScore W2022180101C111368507 @default.
- W2022180101 hasConceptScore W2022180101C12725497 @default.
- W2022180101 hasConceptScore W2022180101C127313418 @default.
- W2022180101 hasConceptScore W2022180101C127413603 @default.
- W2022180101 hasConceptScore W2022180101C147176958 @default.
- W2022180101 hasConceptScore W2022180101C154945302 @default.
- W2022180101 hasConceptScore W2022180101C185592680 @default.
- W2022180101 hasConceptScore W2022180101C204241405 @default.
- W2022180101 hasConceptScore W2022180101C205649164 @default.
- W2022180101 hasConceptScore W2022180101C2780428219 @default.
- W2022180101 hasConceptScore W2022180101C2780648208 @default.
- W2022180101 hasConceptScore W2022180101C39432304 @default.
- W2022180101 hasConceptScore W2022180101C41008148 @default.
- W2022180101 hasConceptScore W2022180101C4792198 @default.
- W2022180101 hasConceptScore W2022180101C50644808 @default.
- W2022180101 hasConceptScore W2022180101C55493867 @default.
- W2022180101 hasConceptScore W2022180101C58640448 @default.