Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022184081> ?p ?o ?g. }
- W2022184081 endingPage "398" @default.
- W2022184081 startingPage "353" @default.
- W2022184081 abstract "We present a geometric formulation for the energy shaping problem. The central objective is the initiation of a more systematic exploration of energy shaping with the aim of de- termining whether a given system can be stabilized using energy shaping feedback. We investigate the partial differential equations for the kinetic energy shaping problem using the formal theory of partial differential equations. The main contribution is sufficient conditions for integrability of these partial differential equations. We couple these results with the integrability results for potential energy shaping (25). This gives some new avenues for answering key questions in energy shaping that have not been addressed to this point. 1. Introduction. In Brockett's 1977 paper (9) it was observed that there were structural aspects of mechanical systems that made them attractive as a class of control problems. In this paper he mentioned differential geometry as the common mathematical structure between control theory and analytical mechanics. He inves- tigated the Lagrangian and Hamiltonian formulations for mechanical systems and considered the interplay of the mechanical and control theoretic structures. One interesting control problem is the following: given a mechanical system with an unstable equilibrium at a point q0, stabilize the system using feedback. One of the recent developments in the stabilization of equilibria is the energy shaping method. The key idea concerns the construction of a feedback for which the closed-loop system possesses the structure of a mechanical system. A feedback so obtained is called an energy shaping feedback and the procedure by which it is obtained is called energy shaping. In the classical notion of energy shaping, the assumed method consists of two stages: shaping the kinetic energy of the system—so-called kinetic energy shaping—and changing the potential energy of the system—so-called potential energy shaping. If such an energy shaping feedback exists, then for stability one has to ensure that the Hessian of the closed-loop potential energy is positive definite. The cart-pendulum, as a mechanical system with one degree of underactuation, is one of the systems that has been stabilized using the energy shaping method (14, 26). The system has the upright equilibria as saddle points and potential energy" @default.
- W2022184081 created "2016-06-24" @default.
- W2022184081 creator A5022064746 @default.
- W2022184081 creator A5025730943 @default.
- W2022184081 creator A5057895970 @default.
- W2022184081 date "2008-01-01" @default.
- W2022184081 modified "2023-09-29" @default.
- W2022184081 title "A Geometric Framework for Stabilization by Energy Shaping: Sufficient Conditions for Existence of Solutions" @default.
- W2022184081 cites W113415832 @default.
- W2022184081 cites W1513060653 @default.
- W2022184081 cites W1553824818 @default.
- W2022184081 cites W1560468705 @default.
- W2022184081 cites W1565577121 @default.
- W2022184081 cites W1803417859 @default.
- W2022184081 cites W1976473169 @default.
- W2022184081 cites W1977165430 @default.
- W2022184081 cites W1977875716 @default.
- W2022184081 cites W2001290675 @default.
- W2022184081 cites W2008121340 @default.
- W2022184081 cites W2010014568 @default.
- W2022184081 cites W2029853675 @default.
- W2022184081 cites W2032630233 @default.
- W2022184081 cites W2048603489 @default.
- W2022184081 cites W2050876957 @default.
- W2022184081 cites W2065975799 @default.
- W2022184081 cites W2070926313 @default.
- W2022184081 cites W2072770984 @default.
- W2022184081 cites W2081570691 @default.
- W2022184081 cites W2081727243 @default.
- W2022184081 cites W2102263452 @default.
- W2022184081 cites W2119791670 @default.
- W2022184081 cites W2125968092 @default.
- W2022184081 cites W2127198539 @default.
- W2022184081 cites W2150915639 @default.
- W2022184081 cites W2170220482 @default.
- W2022184081 cites W2315704123 @default.
- W2022184081 cites W2323719050 @default.
- W2022184081 cites W2964671781 @default.
- W2022184081 cites W434331358 @default.
- W2022184081 cites W563255273 @default.
- W2022184081 doi "https://doi.org/10.4310/cis.2008.v8.n4.a2" @default.
- W2022184081 hasPublicationYear "2008" @default.
- W2022184081 type Work @default.
- W2022184081 sameAs 2022184081 @default.
- W2022184081 citedByCount "19" @default.
- W2022184081 countsByYear W20221840812012 @default.
- W2022184081 countsByYear W20221840812013 @default.
- W2022184081 countsByYear W20221840812014 @default.
- W2022184081 countsByYear W20221840812015 @default.
- W2022184081 countsByYear W20221840812017 @default.
- W2022184081 countsByYear W20221840812021 @default.
- W2022184081 countsByYear W20221840812022 @default.
- W2022184081 crossrefType "journal-article" @default.
- W2022184081 hasAuthorship W2022184081A5022064746 @default.
- W2022184081 hasAuthorship W2022184081A5025730943 @default.
- W2022184081 hasAuthorship W2022184081A5057895970 @default.
- W2022184081 hasBestOaLocation W20221840811 @default.
- W2022184081 hasConcept C105795698 @default.
- W2022184081 hasConcept C121332964 @default.
- W2022184081 hasConcept C121864883 @default.
- W2022184081 hasConcept C144237770 @default.
- W2022184081 hasConcept C154945302 @default.
- W2022184081 hasConcept C186370098 @default.
- W2022184081 hasConcept C2775924081 @default.
- W2022184081 hasConcept C28826006 @default.
- W2022184081 hasConcept C33923547 @default.
- W2022184081 hasConcept C41008148 @default.
- W2022184081 hasConcept C47446073 @default.
- W2022184081 hasConceptScore W2022184081C105795698 @default.
- W2022184081 hasConceptScore W2022184081C121332964 @default.
- W2022184081 hasConceptScore W2022184081C121864883 @default.
- W2022184081 hasConceptScore W2022184081C144237770 @default.
- W2022184081 hasConceptScore W2022184081C154945302 @default.
- W2022184081 hasConceptScore W2022184081C186370098 @default.
- W2022184081 hasConceptScore W2022184081C2775924081 @default.
- W2022184081 hasConceptScore W2022184081C28826006 @default.
- W2022184081 hasConceptScore W2022184081C33923547 @default.
- W2022184081 hasConceptScore W2022184081C41008148 @default.
- W2022184081 hasConceptScore W2022184081C47446073 @default.
- W2022184081 hasIssue "4" @default.
- W2022184081 hasLocation W20221840811 @default.
- W2022184081 hasLocation W20221840812 @default.
- W2022184081 hasLocation W20221840813 @default.
- W2022184081 hasOpenAccess W2022184081 @default.
- W2022184081 hasPrimaryLocation W20221840811 @default.
- W2022184081 hasRelatedWork W1975077105 @default.
- W2022184081 hasRelatedWork W1987371472 @default.
- W2022184081 hasRelatedWork W1992089595 @default.
- W2022184081 hasRelatedWork W1994109492 @default.
- W2022184081 hasRelatedWork W2075481273 @default.
- W2022184081 hasRelatedWork W2089811522 @default.
- W2022184081 hasRelatedWork W2092244978 @default.
- W2022184081 hasRelatedWork W2351859806 @default.
- W2022184081 hasRelatedWork W2748952813 @default.
- W2022184081 hasRelatedWork W4239376463 @default.
- W2022184081 hasVolume "8" @default.
- W2022184081 isParatext "false" @default.
- W2022184081 isRetracted "false" @default.