Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022188544> ?p ?o ?g. }
- W2022188544 endingPage "1871" @default.
- W2022188544 startingPage "1862" @default.
- W2022188544 abstract "SummaryWe analyze the allelic polymorphisms in seven Y-specific microsatellite loci and a Y-specific alphoid system with 27 variants (αh I–XXVII), in a total of 89 Y chromosomes carrying the DYS199T allele and belonging to populations representing Amerindian and Na-Dene linguistic groups. Since there are no indications of recurrence for the DYS199C→T transition, it is assumed that all DYS199T haplotypes derive from a single individual in whom the C→T mutation occurred for the first time. We identified both the ancestral founder haplotype, 0A, of the DYS199T lineage and seven derived haplogroups diverging from the ancestral one by one to seven mutational steps. The 0A haplotype (5.7% of Native American chromosomes) had the following constitution: DYS199T, αh II, DYS19/13, DYS389a/10, DYS389b/27, DYS390/24, DYS391/10, DYS392/14, and DYS393/13 (microsatellite alleles are indicated as number of repeats). We analyzed the Y-specific microsatellite mutation rate in 1,743 father-son transmissions, and we pooled our data with data in the literature, to obtain an average mutation rate of .0012. We estimated that the 0A haplotype has an average age of 22,770 years (minimum 13,500 years, maximum 58,700 years). Since the DYS199T allele is found with high frequency in Native American chromosomes, we propose that 0A is one of the most prevalent founder paternal lineages of New World aborigines. We analyze the allelic polymorphisms in seven Y-specific microsatellite loci and a Y-specific alphoid system with 27 variants (αh I–XXVII), in a total of 89 Y chromosomes carrying the DYS199T allele and belonging to populations representing Amerindian and Na-Dene linguistic groups. Since there are no indications of recurrence for the DYS199C→T transition, it is assumed that all DYS199T haplotypes derive from a single individual in whom the C→T mutation occurred for the first time. We identified both the ancestral founder haplotype, 0A, of the DYS199T lineage and seven derived haplogroups diverging from the ancestral one by one to seven mutational steps. The 0A haplotype (5.7% of Native American chromosomes) had the following constitution: DYS199T, αh II, DYS19/13, DYS389a/10, DYS389b/27, DYS390/24, DYS391/10, DYS392/14, and DYS393/13 (microsatellite alleles are indicated as number of repeats). We analyzed the Y-specific microsatellite mutation rate in 1,743 father-son transmissions, and we pooled our data with data in the literature, to obtain an average mutation rate of .0012. We estimated that the 0A haplotype has an average age of 22,770 years (minimum 13,500 years, maximum 58,700 years). Since the DYS199T allele is found with high frequency in Native American chromosomes, we propose that 0A is one of the most prevalent founder paternal lineages of New World aborigines. Anthropological, archaeological, linguistic, odontological, and genetic tools have been used to reconstruct the history of the peopling of America. As a result of this multidisciplinary approach, it is generally accepted that the first colonization of America came from Asia during the last glaciation, through a Bering land bridge connecting both continents. mtDNA is a molecule well suited to evolutionary studies, because of its maternal mode of inheritance, minimal recombination, and abundance of polymorphisms. Yet some of the hypotheses based on the interpretation of mitochondrial haplotypes are conflicting. Mitochondrial analysis has been invoked to support a multiwave-founder colonization of America (Torroni et al. Torroni et al., 1993Torroni A Sukernik RI Schurr TG Starikovskaya YB Cabell MF Crawford MH Comuzzie AG et al.mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans.Am J Hum Genet. 1993; 53: 591-608PubMed Google Scholar), whereas, on the other hand, mtDNA markers have also been interpreted as supporting a monophyletic colonization from Asia (Forster et al. Forster et al., 1996Forster P Harding R Torroni A Bandelt H-J Origin and evolution of Native American mtDNA variation: a reappraisal.Am J Hum Genet. 1996; 59: 935-945PubMed Google Scholar; Bonatto and Salzano Bonatto and Salzano, 1997Bonatto SL Salzano FM A single and early migration for the peopling of the Americas supported by mitochondrial DNA sequence data.Proc Natl Acad Sci USA. 1997; 94: 1866-1971Crossref PubMed Scopus (200) Google Scholar; Stone and Stoneking Stone and Stoneking, 1998Stone AC Stoneking M mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World.Am J Hum Genet. 1998; 62: 1153-1170Abstract Full Text Full Text PDF PubMed Scopus (201) Google Scholar). Archaeological studies seem to indicate an antiquity in the range of 11,000–33,000 years before the present (YBP) for the first settlements in Beringia and the New World (Hoeffecker et al. Hoffecker et al., 1993Hoffecker JF Powerds RW Goebel T The colonization of Beringia and the peopling of the new world.Science. 1993; 259: 46-53Crossref PubMed Scopus (154) Google Scholar; Szathmary Szathmary, 1993Szathmary EJ Genetics of aboriginal North Americans.Evol Anthropol. 1993; 1: 202-220Crossref Scopus (61) Google Scholar), whereas different laboratories working with mitochondrial polymorphisms have proposed times in the range of 14,000–55,000 YBP for this event (Horai et al. Horai et al., 1993Horai S Kondo R Nakagawa-Hattori Y Hayashi S Sonoda S Tajima K Peopling of the Americas, founded by four major lineages of mitochondrial DNA.Mol Biol Evol. 1993; 10: 23-47PubMed Google Scholar; Torroni et al. Torroni et al., 1994Torroni A Neel JV Barrantes R Schurr TG Wallace DC Mitochondrial DNA “clock” for the Amerinds and its implications for timing their entry into North America.Proc Natl Acad Sci USA. 1994; 91: 1158-1162Crossref PubMed Scopus (139) Google Scholar; Bonatto and Salzano Bonatto and Salzano, 1997Bonatto SL Salzano FM A single and early migration for the peopling of the Americas supported by mitochondrial DNA sequence data.Proc Natl Acad Sci USA. 1997; 94: 1866-1971Crossref PubMed Scopus (200) Google Scholar; Forster et al. Forster et al., 1997Forster P Harding R Torroni A Bandelt H-J Reply to Bianchi and Bailliet.Am J Hum Genet. 1997; 61: 246-247Abstract Full Text PDF Google Scholar). Founder maternal Amerindian lineages initially had been estimated as being four (Torroni et al. Torroni et al., 1993Torroni A Sukernik RI Schurr TG Starikovskaya YB Cabell MF Crawford MH Comuzzie AG et al.mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans.Am J Hum Genet. 1993; 53: 591-608PubMed Google Scholar). Now it is assumed that there are ⩾10–13 such lineages, although there is no agreement on the molecular typification of some of these founder haplogroups (Bailliet et al. Bailliet et al., 1994Bailliet G Rothhammer F Carnese FR Bravi CM Bianchi NO Founder mitochondrial haplotypes in Amerindian populations.Am J Hum Genet. 1994; 55: 27-33PubMed Google Scholar; Merriwether et al. Merriwether et al., 1995Merriwether DA Rothhammer F Ferrell F Distribution of four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World.Am J Phys Anthropol. 1995; 98: 411-430Crossref PubMed Scopus (213) Google Scholar; Forster et al. Forster et al., 1996Forster P Harding R Torroni A Bandelt H-J Origin and evolution of Native American mtDNA variation: a reappraisal.Am J Hum Genet. 1996; 59: 935-945PubMed Google Scholar, Forster et al., 1997Forster P Harding R Torroni A Bandelt H-J Reply to Bianchi and Bailliet.Am J Hum Genet. 1997; 61: 246-247Abstract Full Text PDF Google Scholar; Bianchi et al. Bianchi et al., 1997Bianchi NO Bailliet G Bravi CM Carnese FR Rothhammer F Martinez-Marignac VL Pena SDJ Origin of Amerindian Y-chromosomes as inferred by the analysis of six polymorphic markers.Am J Phys Anthropol. 1997; 102: 79-89Crossref PubMed Scopus (71) Google Scholar). Some of those controversial hypotheses could perhaps be reinterpreted by resorting to the use of additional and complementary polymorphic DNA systems. In this regard, Y chromosome–specific regions are among the most promising. The male-specific segment of the Y chromosome in mammals has no homologous counterpart, does not recombine, has all its genes in linkage disequilibrium, and is paternally transmitted. In this regard, it is the male equivalent of mtDNA. Conversely, Y-specific genes are haploid, whereas mitochondrial genes are polyploid, and the mutation rate of Y DNA is much lower than that of mtDNA. The association of two or more DNA markers defines a haplotype. Mitochondrial and Y-chromosome haplotypes are known to correlate with the ethnic origin of the population (Torroni et al. Torroni et al., 1993Torroni A Sukernik RI Schurr TG Starikovskaya YB Cabell MF Crawford MH Comuzzie AG et al.mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans.Am J Hum Genet. 1993; 53: 591-608PubMed Google Scholar; Hammer Hammer, 1995Hammer MF A recent common ancestry for human Y chromosomes.Nature. 1995; 378: 376-378Crossref PubMed Scopus (286) Google Scholar; Merriwether et al. Merriwether et al., 1995Merriwether DA Rothhammer F Ferrell F Distribution of four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World.Am J Phys Anthropol. 1995; 98: 411-430Crossref PubMed Scopus (213) Google Scholar; Pena et al. Pena et al., 1995Pena SDJ Santos FR Bianchi NO Bravi CM Carnese FR Rothhammer F Gerelsaikhan T et al.A major founder Y-chromosome haplotype in Amerindians.Nat Genet. 1995; 11: 15-16Crossref PubMed Scopus (81) Google Scholar; Underhill et al. Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar, Underhill et al., 1997Underhill PA Jin L Lin AA Qasim Mehdi S Jenkins T Vollrath D Davis RW et al.Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography.Genome Res. 1997; 7: 996-1005Crossref PubMed Scopus (562) Google Scholar; Bianchi et al. Bianchi et al., 1997Bianchi NO Bailliet G Bravi CM Carnese FR Rothhammer F Martinez-Marignac VL Pena SDJ Origin of Amerindian Y-chromosomes as inferred by the analysis of six polymorphic markers.Am J Phys Anthropol. 1997; 102: 79-89Crossref PubMed Scopus (71) Google Scholar; Bravi et al. Bravi et al., 1997Bravi CM Sans M Bailliet G Martínez Marignac VL Portas M Barreto I Bonilla C et al.Characterization of mitochondrial DNA and Y-chromosome haplotypes in a Uruguayan population of African ancestry.Hum Biol. 1997; 69: 641-652PubMed Google Scholar; Karafet et al. Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar). We have reported elsewhere that the αh II form of the Y-specific alphoid satellite is associated with the A allele of the DYS19 microsatellite, giving rise to a Native American–specific haplotype that, thus far, has not been detected in any other geographic population (Pena et al. Pena et al., 1995Pena SDJ Santos FR Bianchi NO Bravi CM Carnese FR Rothhammer F Gerelsaikhan T et al.A major founder Y-chromosome haplotype in Amerindians.Nat Genet. 1995; 11: 15-16Crossref PubMed Scopus (81) Google Scholar). In 1996, Underhill et al. found that chromosomes sampled from speakers of Amerindian, Na-Dene, and Eskimo-Aleut languages exhibited the association of the DSY19A allele with a C→T transition at base position 181 of the DYS199 locus. Recently, Bianchi et al. (Bianchi et al., 1997Bianchi NO Bailliet G Bravi CM Carnese FR Rothhammer F Martinez-Marignac VL Pena SDJ Origin of Amerindian Y-chromosomes as inferred by the analysis of six polymorphic markers.Am J Phys Anthropol. 1997; 102: 79-89Crossref PubMed Scopus (71) Google Scholar), by showing linkage disequilibrium of αh II, DYS199T, and DYS19A markers, defined the Native American aborigine Y chromosome with higher accuracy. The aim of the present report is to use additional polyallelic Y-specific markers to develop a better understanding of the origin and evolution of Native American Y chromosomes. We analyzed a total of 280 Native American Y chromosomes; 88 (31.4%) were DYS199C, and 192 (68.6%) were DYS199T (see below). DYS199T chromosomes were the ones selected for further studies; in 89 of them, we could analyze the eight polyallelic markers indicated below, whereas in the remaining cases, because of the limited amount of DNA, we could test only some of these markers. Table 1 provides details on the populations, either analyzed by us or tested by other groups, in which the DYS199T allele was found.Table 1Populations AnalyzedNo. of SamplesPopulationTotalDYS199CDYS199T (Full/PartialaFull = full testing, which included all DYS199T chromosomes in which the seven microsatellites and αh systems could be analyzed; Partial = partial testing, which included only DYS199T chromosomes in which only one to six polyallelic systems could be analyzed.)Linguistic PhylumbAccording to Ruhlen (1997).Geographic RegionReference(s)Even65641AltaicRussiaKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Chukchi30255Chukchi- KamchatkanRussiaKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar), Lell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)Siberian Eskimo564610Eskimo-AleutRussiaKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar), Lell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)North American Eskimo1037Eskimo-AleutUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar), Underhill et al. (Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar)Tanana1275Na-DeneUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Navajo80/1039/441/6 (2/3)Na-DeneNew MexicoKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar), Underhill et al. (Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar), present studyOjibwa16160AmerindianUnited StatesScozzari et al. (Scozzari et al., 1997Scozzari R Cruciani F Santolamazza P Sellitto D Cole DEC Rubin LA Labuda D et al.mtDNA and Y chromosome-specific polymorphisms in modern Ojibwa: implications about the origin of their gene pool.Am J Hum Genet. 1997; 60: 241-244PubMed Google Scholar)Cheyenne45378AmerindianUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Havasupai1055AmerindianUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Pima241410AmerindianUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Pueblo1899AmerindianUnited StatesKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Sioux17134 (2/1)AmerindianMinnesotaPresent studyZuni1679 (4/5)AmerindianUnited StatesPresent studySeminole251312AmerindianFloridaLell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)Maya1028 (6/1)AmerindianYucatan, MexicoPresent studyMixe14212AmerindianMexicoLell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)Mixteca1037AmerindianMexicoLell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)Zapoteca21912AmerindianMexicoKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar), Lell et al. (Lell et al., 1997Lell JT Brown MD Schurr TG Sukernik IR Starikovskaya YB Torroni A Moore LG et al.Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes.Hum Genet. 1997; 100: 536-543Crossref PubMed Scopus (80) Google Scholar)Chimila1147 (4/2)AmerindianColombiaPresent studyWayuu23158AmerindianVenezuelaKarafet et al. (Karafet et al., 1997Karafet T Zegura SL Vuturo-Brady J Posukh O Osipova L Wiebe V Romero F et al.Y-chromosome markers and trans-Bering Strait dispersals.Am J Phys Anthropol. 1997; 102: 301-314Crossref PubMed Scopus (86) Google Scholar)Guahibo31427AmerindianVenezuelaScozzari et al. (Scozzari et al., 1997Scozzari R Cruciani F Santolamazza P Sellitto D Cole DEC Rubin LA Labuda D et al.mtDNA and Y chromosome-specific polymorphisms in modern Ojibwa: implications about the origin of their gene pool.Am J Hum Genet. 1997; 60: 241-244PubMed Google Scholar)Ticuna101 (1/0)AmerindianBrazilPresent studyArara808AmerindianAmazonia, BrazilRodriguez-Delfin et al. (Rodriguez-Delfin et al., 1997Rodriguez-Delfin L Santos SEB Zago MA Diversity of the human Y chromosome of South American Amerindians: a comparison with Blacks, Whites, and Japanese from Brazil.Ann Hum Genet. 1997; 61: 439-448Crossref PubMed Scopus (29) Google Scholar)Kayapo10010AmerindianAmazonia, BrazilRodriguez-Delfin et al. (Rodriguez-Delfin et al., 1997Rodriguez-Delfin L Santos SEB Zago MA Diversity of the human Y chromosome of South American Amerindians: a comparison with Blacks, Whites, and Japanese from Brazil.Ann Hum Genet. 1997; 61: 439-448Crossref PubMed Scopus (29) Google Scholar)Wayam Apal918AmerindianAmazonia, BrazilRodriguez-Delfin et al. (Rodriguez-Delfin et al., 1997Rodriguez-Delfin L Santos SEB Zago MA Diversity of the human Y chromosome of South American Amerindians: a comparison with Blacks, Whites, and Japanese from Brazil.Ann Hum Genet. 1997; 61: 439-448Crossref PubMed Scopus (29) Google Scholar)Wayampi10010AmerindianAmazonia, BrazilRodriguez-Delfin et al. (Rodriguez-Delfin et al., 1997Rodriguez-Delfin L Santos SEB Zago MA Diversity of the human Y chromosome of South American Amerindians: a comparison with Blacks, Whites, and Japanese from Brazil.Ann Hum Genet. 1997; 61: 439-448Crossref PubMed Scopus (29) Google Scholar)Yanomana927AmerindianAmazonia, BrazilRodriguez-Delfin et al. (Rodriguez-Delfin et al., 1997Rodriguez-Delfin L Santos SEB Zago MA Diversity of the human Y chromosome of South American Amerindians: a comparison with Blacks, Whites, and Japanese from Brazil.Ann Hum Genet. 1997; 61: 439-448Crossref PubMed Scopus (29) Google Scholar)Karitiana15015AmerindianBrazilUnderhill et al. (Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar)Surui17116AmerindianBrazilUnderhill et al. (Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar)Lengua24816 (5/2)AmerindianSouthern ParaguayPresent studyAyoreo945 (5/0)AmerindianSouthern ParaguayPresent studyWichí26224 (12/10)AmerindianSalta, ArgentinaPresent studyToba514 (4/0)AmerindianSalta, ArgentinaPresent studyChorote918 (5/3)AmerindianSalta, ArgentinaPresent studyMocoví20713 (0/12)AmerindianSanta Fe, ArgentinaPresent studyAtacameño725AmerindianAtacama, ChilePresent studySusque19118 (18/0)AmerindianJujuy, ArgentinaPresent studyHumahuaqueño10010 (10/0)AmerindianJujuy, ArgentinaPresent studyHuilliche251312 (0/0)AmerindianSouthern ChilePresent studyMapuche241014 (3/5)AmerindianRio Negro, ArgentinaPresent studyPehuenche21615 (0/0)AmerindianSouthern ChilePresent studyTehuelche16313AmerindianChubut, ArgentinaPresent study Total838/280399/88439/192 (89/47)Note.—Data from the present study are underlined.a Full = full testing, which included all DYS199T chromosomes in which the seven microsatellites and αh systems could be analyzed; Partial = partial testing, which included only DYS199T chromosomes in which only one to six polyallelic systems could be analyzed.b According to Ruhlen (Ruhlen, 1997Ruhlen M A guide to the world's languages. Vol 1: Classification. Stanford University Press, Stanford1997Google Scholar). Open table in a new tab Note.—Data from the present study are underlined. We also analyzed the paternal lineages in 40 certified families provided by CEPH, which comprised a total of 249 father-son events. The identification of the CEPH families included in the present report is given in table 2. All these families are of Caucasian ancestry; their geographic origins were the United States (28 families), France (10 families), and Venezuela (2 families) (Dausset et al. Dausset et al., 1990Dausset J Cann H Cohen D Lathrop M Lalouel JM White R Centre d'Étude du Polymorphisme Humain (CEPH): collaborative genetic mapping of the human genome.Genomics. 1990; 6: 575-577Crossref PubMed Scopus (465) Google Scholar).Table 2CEPH HaplotypesHaplotypeLineageDYS199αDYS19DYS389aDYS389bDYS390DYS391DYS392DYS39337CI141127221011121375CI151030241011131345CII131027241113131346CII14925241013131331CII14926251013141377CII14927251113141344CII141026241013131333CII1410262411111302CII141026241113131408CII1410262413141421CII14102824101313104CII1410272411131317CII141028241114131418CII1410272511131335CII14112723111313884CII141127241011131341CII141128231013131416CII1411282511111313293CII15927211011141334CII151026241113131332CII161127231011131349CII161129251111131413CIII14926221111131350 and 13294CIII14926231011131362CIII141028221011131340CIII15926221011131424CIII159262410111212CIII17926251111141421CIII151029241011121347CIII151130231012151420CIII1511292310151423CIII1610262210121428CIII1610282310131513291 and 1329CIV159272210111445CIV1511292210111466CV1492724101112102CIX151027211012151423CXII14113025101114 Open table in a new tab We studied one biallelic system and seven polyallelic systems. The biallelic marker is a C→T transition in the 181-bp position of the DYS199 locus (Underhill et al. Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar). The polyallelic markers are the αh alphoid system with 27 different forms (αh I–XXVII) (Santos et al. Santos et al., 1996aSantos FR Bianchi NO Pena SDJ Worldwide distribution of human Y-chromosome haplotypes.Genome Res. 1996a; 6: 601-611Crossref PubMed Scopus (53) Google Scholar; Bianchi et al. Bianchi et al., 1997Bianchi NO Bailliet G Bravi CM Carnese FR Rothhammer F Martinez-Marignac VL Pena SDJ Origin of Amerindian Y-chromosomes as inferred by the analysis of six polymorphic markers.Am J Phys Anthropol. 1997; 102: 79-89Crossref PubMed Scopus (71) Google Scholar) and the microsatellites DYS19 (tetranucleotide; 10 alleles), DYS389a (tetranucleotide; 7 alleles), DYS389b (tetranucleotide; 9 alleles), DYS390 (tetranucleotide; 10 alleles), DYS391 (tetranucleotide; 6 alleles), DYS392 (tetranucleotide; 8 alleles), and DYS393 (trinucleotide; 6 alleles) (de Knijff et al. de Knijff et al., 1997de Knijff P Kayser M Caglia A Corach D Fretwell N Gehrig C Graziosi G et al.Chromosome Y microsatellites: population genetic and evolutionary aspects.Int J Legal Med. 1997; 110: 134-140Crossref PubMed Scopus (269) Google Scholar; Kayser et al. Kayser et al., 1997Kayser M Caglia A Corach D Fretwell N Gehrig C Graziosi G Heidorn F et al.Evaluation of Y-chromosomal STRs: a multicenter study.Int J Legal Med. 1997; 110: 125-133Crossref PubMed Scopus (586) Google Scholar). The methods used for testing these polymorphic markers have been described elsewhere (Santos et al. Santos et al., 1993Santos FR Pena SDJ Epplen JT Genetic and population study of a Y-linked tetra-nucleotide repeat DNA polymorphism with a simple non-isotopic technique.Hum Genet. 1993; 90: 655-656Crossref PubMed Scopus (254) Google Scholar, Santos et al., 1996aSantos FR Bianchi NO Pena SDJ Worldwide distribution of human Y-chromosome haplotypes.Genome Res. 1996a; 6: 601-611Crossref PubMed Scopus (53) Google Scholar; Underhill et al. Underhill et al., 1996Underhill PA Jin L Zemans R Oefner PJ Cavalli-Sforza LL A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history.Proc Natl Acad Sci USA. 1996; 93: 196-200Crossref PubMed Scopus (319) Google Scholar; Kayser et al. Kayser et al., 1997Kayser M Caglia A Corach D Fretwell N Gehrig C Graziosi G Heidorn F et al.Evaluation of Y-chromosomal STRs: a multicenter study.Int J Legal Med. 1997; 110: 125-133Crossref PubMed Scopus (586) Google Scholar). In the present report, the two DYS199 alleles are identified as C or T, the αh alleles are designated by means of roman numbers, and microsatellites are identified by the number of repeats, as used in the reference tables of de Knijff et al. (de Knijff et al., 1997de Knijff P Kayser M Caglia A Corach D Fretwell N Gehrig C Graziosi G et al.Chromosome Y microsatellites: population genetic and evolutionary aspects.Int J Legal Med. 1997; 110: 134-140Crossref PubMed Scopus (269) Google Scholar) and Kayser et al. (Kayser et al., 1997Kayser M Caglia A Corach D Fretwell N Gehrig C Graziosi G Heidorn F et al.Evaluation of Y-chromosomal STRs: a multicenter study.Int J Legal Med. 1997; 110: 125-133Crossref PubMed Scopus (586) Google Scholar). Table 3 lists the allelic frequencies for each of the polymorphic systems analyzed in the 40 CEPH paternal lineages and in Native American Y chromosomes. For the estimation of allelic frequencies in Native Americans, we used the 89 DYS199T chromosomes in which we could test all Y-specific markers, plus the 47 DYS199T cases in which only part of these markers were analyzed (table 1). All Native American samples were αh II, whereas CEPH chromosomes exhibited seven different forms of αh, with αh II being the most frequent (table 3). CEPH and Native American Y chromosomes showed the same predominant allele in the DYS389a, DYS390, DYS391, and DYS393 loci and showed different predominant alleles in the DYS19, DYS389b, and DYS392 microsatellites (table 2; allelic distributions for each Y chromosome are shown in tables 4 and 5).Table 3Allelic FrequenciesFrequency inaThe most frequent allele in each group is underlined.AlleleCEPHNative American Sample (No. of" @default.
- W2022188544 created "2016-06-24" @default.
- W2022188544 creator A5006200677 @default.
- W2022188544 creator A5015727381 @default.
- W2022188544 creator A5041623081 @default.
- W2022188544 creator A5058335467 @default.
- W2022188544 creator A5074923194 @default.
- W2022188544 creator A5075689837 @default.
- W2022188544 creator A5082645461 @default.
- W2022188544 creator A5086627413 @default.
- W2022188544 date "1998-12-01" @default.
- W2022188544 modified "2023-10-18" @default.
- W2022188544 title "Characterization of Ancestral and Derived Y-Chromosome Haplotypes of New World Native Populations" @default.
- W2022188544 cites W1501292756 @default.
- W2022188544 cites W1527608295 @default.
- W2022188544 cites W1570067108 @default.
- W2022188544 cites W1576042992 @default.
- W2022188544 cites W1967254027 @default.
- W2022188544 cites W1971504973 @default.
- W2022188544 cites W1979047363 @default.
- W2022188544 cites W1987163913 @default.
- W2022188544 cites W1992388952 @default.
- W2022188544 cites W1999887312 @default.
- W2022188544 cites W2002035736 @default.
- W2022188544 cites W2007965816 @default.
- W2022188544 cites W2009062292 @default.
- W2022188544 cites W2020901419 @default.
- W2022188544 cites W2026487640 @default.
- W2022188544 cites W2026850112 @default.
- W2022188544 cites W2033697698 @default.
- W2022188544 cites W2042529907 @default.
- W2022188544 cites W2045006125 @default.
- W2022188544 cites W2050869010 @default.
- W2022188544 cites W2057268860 @default.
- W2022188544 cites W2057771900 @default.
- W2022188544 cites W2062518633 @default.
- W2022188544 cites W2062583464 @default.
- W2022188544 cites W2075748014 @default.
- W2022188544 cites W2078947652 @default.
- W2022188544 cites W2089853410 @default.
- W2022188544 cites W2100478222 @default.
- W2022188544 cites W2108272863 @default.
- W2022188544 cites W2112066577 @default.
- W2022188544 cites W2124736181 @default.
- W2022188544 cites W2128850814 @default.
- W2022188544 cites W2147655348 @default.
- W2022188544 cites W2150406209 @default.
- W2022188544 cites W2160142381 @default.
- W2022188544 cites W2160517750 @default.
- W2022188544 cites W2160982584 @default.
- W2022188544 cites W2166351679 @default.
- W2022188544 cites W2256839430 @default.
- W2022188544 cites W2320822377 @default.
- W2022188544 cites W2993693079 @default.
- W2022188544 cites W4229967758 @default.
- W2022188544 cites W4254600867 @default.
- W2022188544 cites W44361760 @default.
- W2022188544 doi "https://doi.org/10.1086/302141" @default.
- W2022188544 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1377657" @default.
- W2022188544 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9837838" @default.
- W2022188544 hasPublicationYear "1998" @default.
- W2022188544 type Work @default.
- W2022188544 sameAs 2022188544 @default.
- W2022188544 citedByCount "157" @default.
- W2022188544 countsByYear W20221885442012 @default.
- W2022188544 countsByYear W20221885442013 @default.
- W2022188544 countsByYear W20221885442014 @default.
- W2022188544 countsByYear W20221885442016 @default.
- W2022188544 countsByYear W20221885442017 @default.
- W2022188544 countsByYear W20221885442018 @default.
- W2022188544 countsByYear W20221885442019 @default.
- W2022188544 countsByYear W20221885442021 @default.
- W2022188544 countsByYear W20221885442022 @default.
- W2022188544 countsByYear W20221885442023 @default.
- W2022188544 crossrefType "journal-article" @default.
- W2022188544 hasAuthorship W2022188544A5006200677 @default.
- W2022188544 hasAuthorship W2022188544A5015727381 @default.
- W2022188544 hasAuthorship W2022188544A5041623081 @default.
- W2022188544 hasAuthorship W2022188544A5058335467 @default.
- W2022188544 hasAuthorship W2022188544A5074923194 @default.
- W2022188544 hasAuthorship W2022188544A5075689837 @default.
- W2022188544 hasAuthorship W2022188544A5082645461 @default.
- W2022188544 hasAuthorship W2022188544A5086627413 @default.
- W2022188544 hasBestOaLocation W20221885441 @default.
- W2022188544 hasConcept C104317684 @default.
- W2022188544 hasConcept C180754005 @default.
- W2022188544 hasConcept C197754878 @default.
- W2022188544 hasConcept C2780246931 @default.
- W2022188544 hasConcept C30481170 @default.
- W2022188544 hasConcept C53553401 @default.
- W2022188544 hasConcept C54355233 @default.
- W2022188544 hasConcept C78458016 @default.
- W2022188544 hasConcept C86803240 @default.
- W2022188544 hasConcept C95457728 @default.
- W2022188544 hasConceptScore W2022188544C104317684 @default.
- W2022188544 hasConceptScore W2022188544C180754005 @default.
- W2022188544 hasConceptScore W2022188544C197754878 @default.
- W2022188544 hasConceptScore W2022188544C2780246931 @default.