Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022189843> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2022189843 endingPage "893" @default.
- W2022189843 startingPage "881" @default.
- W2022189843 abstract "Sequential pattern mining is a crucial but challenging task in many applications, e.g., analyzing the behaviors of data in transactions and discovering frequent patterns in time series data. This task becomes difficult when valuable patterns are locally or implicitly involved in noisy data. In this paper, we propose a method for mining such local patterns from sequences. Using rough set theory, we describe an algorithm for generating decision rules that take into account local patterns for arriving at a particular decision. To apply sequential data to rough set theory, the size of local patterns is specified, allowing a set of sequences to be transformed into a sequential information system. We use the discernibility of decision classes to establish evaluation criteria for the decision rules in the sequential information system." @default.
- W2022189843 created "2016-06-24" @default.
- W2022189843 creator A5037354785 @default.
- W2022189843 creator A5054917794 @default.
- W2022189843 date "2011-09-01" @default.
- W2022189843 modified "2023-09-26" @default.
- W2022189843 title "A sequential pattern mining algorithm using rough set theory" @default.
- W2022189843 cites W1498480113 @default.
- W2022189843 cites W1586946610 @default.
- W2022189843 cites W1608194207 @default.
- W2022189843 cites W1974341139 @default.
- W2022189843 cites W1987709954 @default.
- W2022189843 cites W2022551085 @default.
- W2022189843 cites W2051122730 @default.
- W2022189843 cites W2068383400 @default.
- W2022189843 cites W2071922386 @default.
- W2022189843 cites W2092542234 @default.
- W2022189843 cites W2108072252 @default.
- W2022189843 cites W2124052091 @default.
- W2022189843 cites W2143451122 @default.
- W2022189843 cites W2162784348 @default.
- W2022189843 cites W2168196587 @default.
- W2022189843 cites W4254829975 @default.
- W2022189843 cites W8845214 @default.
- W2022189843 doi "https://doi.org/10.1016/j.ijar.2011.03.002" @default.
- W2022189843 hasPublicationYear "2011" @default.
- W2022189843 type Work @default.
- W2022189843 sameAs 2022189843 @default.
- W2022189843 citedByCount "48" @default.
- W2022189843 countsByYear W20221898432012 @default.
- W2022189843 countsByYear W20221898432013 @default.
- W2022189843 countsByYear W20221898432014 @default.
- W2022189843 countsByYear W20221898432015 @default.
- W2022189843 countsByYear W20221898432016 @default.
- W2022189843 countsByYear W20221898432017 @default.
- W2022189843 countsByYear W20221898432018 @default.
- W2022189843 countsByYear W20221898432019 @default.
- W2022189843 countsByYear W20221898432020 @default.
- W2022189843 countsByYear W20221898432021 @default.
- W2022189843 countsByYear W20221898432022 @default.
- W2022189843 countsByYear W20221898432023 @default.
- W2022189843 crossrefType "journal-article" @default.
- W2022189843 hasAuthorship W2022189843A5037354785 @default.
- W2022189843 hasAuthorship W2022189843A5054917794 @default.
- W2022189843 hasBestOaLocation W20221898431 @default.
- W2022189843 hasConcept C111012933 @default.
- W2022189843 hasConcept C11413529 @default.
- W2022189843 hasConcept C119857082 @default.
- W2022189843 hasConcept C124101348 @default.
- W2022189843 hasConcept C149490388 @default.
- W2022189843 hasConcept C153046414 @default.
- W2022189843 hasConcept C154945302 @default.
- W2022189843 hasConcept C162324750 @default.
- W2022189843 hasConcept C177264268 @default.
- W2022189843 hasConcept C187736073 @default.
- W2022189843 hasConcept C199360897 @default.
- W2022189843 hasConcept C2780451532 @default.
- W2022189843 hasConcept C39105242 @default.
- W2022189843 hasConcept C41008148 @default.
- W2022189843 hasConcept C84839998 @default.
- W2022189843 hasConceptScore W2022189843C111012933 @default.
- W2022189843 hasConceptScore W2022189843C11413529 @default.
- W2022189843 hasConceptScore W2022189843C119857082 @default.
- W2022189843 hasConceptScore W2022189843C124101348 @default.
- W2022189843 hasConceptScore W2022189843C149490388 @default.
- W2022189843 hasConceptScore W2022189843C153046414 @default.
- W2022189843 hasConceptScore W2022189843C154945302 @default.
- W2022189843 hasConceptScore W2022189843C162324750 @default.
- W2022189843 hasConceptScore W2022189843C177264268 @default.
- W2022189843 hasConceptScore W2022189843C187736073 @default.
- W2022189843 hasConceptScore W2022189843C199360897 @default.
- W2022189843 hasConceptScore W2022189843C2780451532 @default.
- W2022189843 hasConceptScore W2022189843C39105242 @default.
- W2022189843 hasConceptScore W2022189843C41008148 @default.
- W2022189843 hasConceptScore W2022189843C84839998 @default.
- W2022189843 hasFunder F4320320912 @default.
- W2022189843 hasIssue "6" @default.
- W2022189843 hasLocation W20221898431 @default.
- W2022189843 hasLocation W20221898432 @default.
- W2022189843 hasOpenAccess W2022189843 @default.
- W2022189843 hasPrimaryLocation W20221898431 @default.
- W2022189843 hasRelatedWork W2008695827 @default.
- W2022189843 hasRelatedWork W2051122730 @default.
- W2022189843 hasRelatedWork W2095990577 @default.
- W2022189843 hasRelatedWork W2143928158 @default.
- W2022189843 hasRelatedWork W2161579878 @default.
- W2022189843 hasRelatedWork W2165634587 @default.
- W2022189843 hasRelatedWork W2350442377 @default.
- W2022189843 hasRelatedWork W2353879980 @default.
- W2022189843 hasRelatedWork W2369031945 @default.
- W2022189843 hasRelatedWork W2963142056 @default.
- W2022189843 hasVolume "52" @default.
- W2022189843 isParatext "false" @default.
- W2022189843 isRetracted "false" @default.
- W2022189843 magId "2022189843" @default.
- W2022189843 workType "article" @default.