Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022189869> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2022189869 abstract "Estimating and predicting traffic situations over time is an essential capability for sophisticated driver assistance systems or autonomous driving. When longer prediction horizons are needed, e.g., in decision making or motion planning, the uncertainty induced by incomplete environment perception and stochastic situation development over time cannot be neglected without sacrificing robustness and safety. Especially describing the unknown behavior of other traffic participants poses a complex problem. Building consistent probabilistic models of their manifold and changing interactions with the environment, the road network and other traffic participants by hand is error-prone. Further, the results could hardly cover the complete diversity of human behaviors. This paper presents an approach for learning continuous, non-linear, context dependent process models for the behavior of traffic participants from unlabeled observations. The resulting models are naturally embedded into a Dynamic Bayesian Network (DBN) that enables the prediction and estimation of traffic situations based on noisy and incomplete measurements. Using a hybrid state representation it combines discrete and continuous quantities in a mathematically sound way. Experiments show a significant improvement in estimation and prediction accuracy by the learned context dependent models over standard models, which only consider vehicle dynamics." @default.
- W2022189869 created "2016-06-24" @default.
- W2022189869 creator A5007485736 @default.
- W2022189869 creator A5025176377 @default.
- W2022189869 creator A5087773032 @default.
- W2022189869 date "2013-10-01" @default.
- W2022189869 modified "2023-10-02" @default.
- W2022189869 title "Learning context sensitive behavior models from observations for predicting traffic situations" @default.
- W2022189869 cites W1518969363 @default.
- W2022189869 cites W1521536236 @default.
- W2022189869 cites W1601476331 @default.
- W2022189869 cites W2042929057 @default.
- W2022189869 cites W2047834101 @default.
- W2022189869 cites W2049633694 @default.
- W2022189869 cites W2054161738 @default.
- W2022189869 cites W2058570191 @default.
- W2022189869 cites W2069230091 @default.
- W2022189869 cites W2095864580 @default.
- W2022189869 cites W2567948266 @default.
- W2022189869 cites W2911964244 @default.
- W2022189869 cites W4230674625 @default.
- W2022189869 cites W2081410130 @default.
- W2022189869 doi "https://doi.org/10.1109/itsc.2013.6728484" @default.
- W2022189869 hasPublicationYear "2013" @default.
- W2022189869 type Work @default.
- W2022189869 sameAs 2022189869 @default.
- W2022189869 citedByCount "47" @default.
- W2022189869 countsByYear W20221898692014 @default.
- W2022189869 countsByYear W20221898692015 @default.
- W2022189869 countsByYear W20221898692016 @default.
- W2022189869 countsByYear W20221898692017 @default.
- W2022189869 countsByYear W20221898692018 @default.
- W2022189869 countsByYear W20221898692019 @default.
- W2022189869 countsByYear W20221898692020 @default.
- W2022189869 countsByYear W20221898692021 @default.
- W2022189869 countsByYear W20221898692022 @default.
- W2022189869 countsByYear W20221898692023 @default.
- W2022189869 crossrefType "proceedings-article" @default.
- W2022189869 hasAuthorship W2022189869A5007485736 @default.
- W2022189869 hasAuthorship W2022189869A5025176377 @default.
- W2022189869 hasAuthorship W2022189869A5087773032 @default.
- W2022189869 hasConcept C104317684 @default.
- W2022189869 hasConcept C119857082 @default.
- W2022189869 hasConcept C124101348 @default.
- W2022189869 hasConcept C151730666 @default.
- W2022189869 hasConcept C154945302 @default.
- W2022189869 hasConcept C185592680 @default.
- W2022189869 hasConcept C2779343474 @default.
- W2022189869 hasConcept C33724603 @default.
- W2022189869 hasConcept C41008148 @default.
- W2022189869 hasConcept C49937458 @default.
- W2022189869 hasConcept C55493867 @default.
- W2022189869 hasConcept C63479239 @default.
- W2022189869 hasConcept C82142266 @default.
- W2022189869 hasConcept C86803240 @default.
- W2022189869 hasConcept C87833898 @default.
- W2022189869 hasConceptScore W2022189869C104317684 @default.
- W2022189869 hasConceptScore W2022189869C119857082 @default.
- W2022189869 hasConceptScore W2022189869C124101348 @default.
- W2022189869 hasConceptScore W2022189869C151730666 @default.
- W2022189869 hasConceptScore W2022189869C154945302 @default.
- W2022189869 hasConceptScore W2022189869C185592680 @default.
- W2022189869 hasConceptScore W2022189869C2779343474 @default.
- W2022189869 hasConceptScore W2022189869C33724603 @default.
- W2022189869 hasConceptScore W2022189869C41008148 @default.
- W2022189869 hasConceptScore W2022189869C49937458 @default.
- W2022189869 hasConceptScore W2022189869C55493867 @default.
- W2022189869 hasConceptScore W2022189869C63479239 @default.
- W2022189869 hasConceptScore W2022189869C82142266 @default.
- W2022189869 hasConceptScore W2022189869C86803240 @default.
- W2022189869 hasConceptScore W2022189869C87833898 @default.
- W2022189869 hasLocation W20221898691 @default.
- W2022189869 hasOpenAccess W2022189869 @default.
- W2022189869 hasPrimaryLocation W20221898691 @default.
- W2022189869 hasRelatedWork W1553487949 @default.
- W2022189869 hasRelatedWork W1575868721 @default.
- W2022189869 hasRelatedWork W2154527499 @default.
- W2022189869 hasRelatedWork W2165709915 @default.
- W2022189869 hasRelatedWork W2189510368 @default.
- W2022189869 hasRelatedWork W2207154365 @default.
- W2022189869 hasRelatedWork W2302613061 @default.
- W2022189869 hasRelatedWork W2381327187 @default.
- W2022189869 hasRelatedWork W4385957992 @default.
- W2022189869 hasRelatedWork W44429422 @default.
- W2022189869 isParatext "false" @default.
- W2022189869 isRetracted "false" @default.
- W2022189869 magId "2022189869" @default.
- W2022189869 workType "article" @default.