Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022193065> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2022193065 abstract "This paper summarizes the results of a signal taxonomy study of gamma ray burst (GRB) data acquired with sensors on-board the Pioneer-Venus Orbiter (PVO) spacecraft. GRB events produce large fluxes of gamma rays with durations of seconds to minutes and have been observed since the early 1970's. The true nature of GRB's is still unknown, and several competing theories exist. A fundamental point of contention among such theories is whether or not different types of GRB exist. If different types of GRB's are discovered in the existing PVO data base, the differences may correlate with their position or source characteristics. Hence, the goal of this project was to use artificial neural networks to perform signal taxonomy on the GRB data base to determine if unique classes or types of GRB's exist. A total of 26 signal features were identified, some of which can be associated directly with some characteristic of the GRB, such as duration, peak count rate, and gamma ray spectrum hardness. Additional features that were selected included the number of zero crossings in the wavelet transform and the fractal dimension of each signal. A self organizing neural network was used with the signal features to search for correlations among the signals contained in the database. The results of this analysis revealed an intrinsic dimensionality of 2 or 3 in the database. That is, it appears as though 2 or 3 distinct types of GRB may exist. In particular, two of the classes contain roughly 90% of the signals in the database of GRB signals we had to work with. These two classes are similar in characteristics but are still sufficiently distinct from one another to form separate categories. The third class of GRB is definitely distinct from the first two." @default.
- W2022193065 created "2016-06-24" @default.
- W2022193065 creator A5019504733 @default.
- W2022193065 date "1994-03-02" @default.
- W2022193065 modified "2023-09-23" @default.
- W2022193065 title "<title>Taxonomy of gamma ray burster data using a self-organizing neural network</title>" @default.
- W2022193065 doi "https://doi.org/10.1117/12.170004" @default.
- W2022193065 hasPublicationYear "1994" @default.
- W2022193065 type Work @default.
- W2022193065 sameAs 2022193065 @default.
- W2022193065 citedByCount "2" @default.
- W2022193065 crossrefType "proceedings-article" @default.
- W2022193065 hasAuthorship W2022193065A5019504733 @default.
- W2022193065 hasBestOaLocation W20221930653 @default.
- W2022193065 hasConcept C111030470 @default.
- W2022193065 hasConcept C121332964 @default.
- W2022193065 hasConcept C153180895 @default.
- W2022193065 hasConcept C154945302 @default.
- W2022193065 hasConcept C17599544 @default.
- W2022193065 hasConcept C196216189 @default.
- W2022193065 hasConcept C41008148 @default.
- W2022193065 hasConcept C44870925 @default.
- W2022193065 hasConcept C47432892 @default.
- W2022193065 hasConcept C50644808 @default.
- W2022193065 hasConceptScore W2022193065C111030470 @default.
- W2022193065 hasConceptScore W2022193065C121332964 @default.
- W2022193065 hasConceptScore W2022193065C153180895 @default.
- W2022193065 hasConceptScore W2022193065C154945302 @default.
- W2022193065 hasConceptScore W2022193065C17599544 @default.
- W2022193065 hasConceptScore W2022193065C196216189 @default.
- W2022193065 hasConceptScore W2022193065C41008148 @default.
- W2022193065 hasConceptScore W2022193065C44870925 @default.
- W2022193065 hasConceptScore W2022193065C47432892 @default.
- W2022193065 hasConceptScore W2022193065C50644808 @default.
- W2022193065 hasLocation W20221930651 @default.
- W2022193065 hasLocation W20221930652 @default.
- W2022193065 hasLocation W20221930653 @default.
- W2022193065 hasOpenAccess W2022193065 @default.
- W2022193065 hasPrimaryLocation W20221930651 @default.
- W2022193065 hasRelatedWork W1597565980 @default.
- W2022193065 hasRelatedWork W165935137 @default.
- W2022193065 hasRelatedWork W2012263400 @default.
- W2022193065 hasRelatedWork W2032088937 @default.
- W2022193065 hasRelatedWork W2074908409 @default.
- W2022193065 hasRelatedWork W2116228165 @default.
- W2022193065 hasRelatedWork W2151541264 @default.
- W2022193065 hasRelatedWork W3101810232 @default.
- W2022193065 hasRelatedWork W3101936499 @default.
- W2022193065 hasRelatedWork W4251024868 @default.
- W2022193065 isParatext "false" @default.
- W2022193065 isRetracted "false" @default.
- W2022193065 magId "2022193065" @default.
- W2022193065 workType "article" @default.