Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022194624> ?p ?o ?g. }
- W2022194624 endingPage "A96" @default.
- W2022194624 startingPage "A96" @default.
- W2022194624 abstract "Context. Principal component analysis (PCA) is widely used to repair incomplete spectra, to perform spectral denoising, and to reduce dimensionality. Presently, no method has been found to be comparable to PCA on these three problems. New methods have been proposed, but are often specific to one problem. For example, locally linear embedding outperforms PCA in dimensionality reduction. However, it cannot be used in spectral denoising and spectral reparing. Wavelet transform can be used to denoise spectra; however, it cannot be used in dimensionality reduction." @default.
- W2022194624 created "2016-06-24" @default.
- W2022194624 creator A5000479483 @default.
- W2022194624 creator A5006467926 @default.
- W2022194624 creator A5041556252 @default.
- W2022194624 creator A5046444692 @default.
- W2022194624 creator A5069643986 @default.
- W2022194624 date "2015-04-01" @default.
- W2022194624 modified "2023-09-24" @default.
- W2022194624 title "Restricted Boltzmann machine: a non-linear substitute for PCA in spectral processing" @default.
- W2022194624 cites W1965131794 @default.
- W2022194624 cites W1982458770 @default.
- W2022194624 cites W1991729684 @default.
- W2022194624 cites W1998729945 @default.
- W2022194624 cites W2003082336 @default.
- W2022194624 cites W2004543017 @default.
- W2022194624 cites W2014070414 @default.
- W2022194624 cites W2025543924 @default.
- W2022194624 cites W2032231736 @default.
- W2022194624 cites W2033756127 @default.
- W2022194624 cites W2037370995 @default.
- W2022194624 cites W2046668153 @default.
- W2022194624 cites W2047612622 @default.
- W2022194624 cites W2092766941 @default.
- W2022194624 cites W2100495367 @default.
- W2022194624 cites W2106239882 @default.
- W2022194624 cites W2111072639 @default.
- W2022194624 cites W2118973161 @default.
- W2022194624 cites W2136922672 @default.
- W2022194624 cites W2157917411 @default.
- W2022194624 cites W3099514962 @default.
- W2022194624 cites W3105988773 @default.
- W2022194624 cites W4231109964 @default.
- W2022194624 doi "https://doi.org/10.1051/0004-6361/201424194" @default.
- W2022194624 hasPublicationYear "2015" @default.
- W2022194624 type Work @default.
- W2022194624 sameAs 2022194624 @default.
- W2022194624 citedByCount "12" @default.
- W2022194624 countsByYear W20221946242016 @default.
- W2022194624 countsByYear W20221946242017 @default.
- W2022194624 countsByYear W20221946242018 @default.
- W2022194624 countsByYear W20221946242019 @default.
- W2022194624 countsByYear W20221946242020 @default.
- W2022194624 countsByYear W20221946242021 @default.
- W2022194624 countsByYear W20221946242022 @default.
- W2022194624 crossrefType "journal-article" @default.
- W2022194624 hasAuthorship W2022194624A5000479483 @default.
- W2022194624 hasAuthorship W2022194624A5006467926 @default.
- W2022194624 hasAuthorship W2022194624A5041556252 @default.
- W2022194624 hasAuthorship W2022194624A5046444692 @default.
- W2022194624 hasAuthorship W2022194624A5069643986 @default.
- W2022194624 hasBestOaLocation W20221946241 @default.
- W2022194624 hasConcept C111030470 @default.
- W2022194624 hasConcept C111335779 @default.
- W2022194624 hasConcept C11413529 @default.
- W2022194624 hasConcept C121332964 @default.
- W2022194624 hasConcept C1276947 @default.
- W2022194624 hasConcept C151730666 @default.
- W2022194624 hasConcept C153180895 @default.
- W2022194624 hasConcept C154945302 @default.
- W2022194624 hasConcept C163294075 @default.
- W2022194624 hasConcept C24252448 @default.
- W2022194624 hasConcept C2524010 @default.
- W2022194624 hasConcept C27438332 @default.
- W2022194624 hasConcept C2779343474 @default.
- W2022194624 hasConcept C2983668108 @default.
- W2022194624 hasConcept C32891209 @default.
- W2022194624 hasConcept C33923547 @default.
- W2022194624 hasConcept C41008148 @default.
- W2022194624 hasConcept C41608201 @default.
- W2022194624 hasConcept C47432892 @default.
- W2022194624 hasConcept C4839761 @default.
- W2022194624 hasConcept C62520636 @default.
- W2022194624 hasConcept C70518039 @default.
- W2022194624 hasConcept C86803240 @default.
- W2022194624 hasConceptScore W2022194624C111030470 @default.
- W2022194624 hasConceptScore W2022194624C111335779 @default.
- W2022194624 hasConceptScore W2022194624C11413529 @default.
- W2022194624 hasConceptScore W2022194624C121332964 @default.
- W2022194624 hasConceptScore W2022194624C1276947 @default.
- W2022194624 hasConceptScore W2022194624C151730666 @default.
- W2022194624 hasConceptScore W2022194624C153180895 @default.
- W2022194624 hasConceptScore W2022194624C154945302 @default.
- W2022194624 hasConceptScore W2022194624C163294075 @default.
- W2022194624 hasConceptScore W2022194624C24252448 @default.
- W2022194624 hasConceptScore W2022194624C2524010 @default.
- W2022194624 hasConceptScore W2022194624C27438332 @default.
- W2022194624 hasConceptScore W2022194624C2779343474 @default.
- W2022194624 hasConceptScore W2022194624C2983668108 @default.
- W2022194624 hasConceptScore W2022194624C32891209 @default.
- W2022194624 hasConceptScore W2022194624C33923547 @default.
- W2022194624 hasConceptScore W2022194624C41008148 @default.
- W2022194624 hasConceptScore W2022194624C41608201 @default.
- W2022194624 hasConceptScore W2022194624C47432892 @default.
- W2022194624 hasConceptScore W2022194624C4839761 @default.
- W2022194624 hasConceptScore W2022194624C62520636 @default.
- W2022194624 hasConceptScore W2022194624C70518039 @default.
- W2022194624 hasConceptScore W2022194624C86803240 @default.