Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022199772> ?p ?o ?g. }
- W2022199772 abstract "Developing the realistic blast loading associated with an internal detonation occurring within a pressure vessel or heat exchanger is challenging. Unlike evaluation of external blast loading on structures due to far-field explosions, where typical overpressure-time histories can be reasonably defined based on empirical data, investigating confined detonations presents additional complications. The subsequent impulsive peak reflected overpressure from confined detonations acting on a structure can be extremely high due to the close proximity of the blast source to the vessel wall or pressure boundary. This establishes the possibility of significant structural damage for process equipment subjected to an internal detonation, even for relatively modest amounts of concentrated explosive products. This paper discusses the underlying theory of blast analysis and examines the practical application of non-linear, finite element based, explicit computational techniques for simulating the load acting on a structure due to internal and external blasts. The investigation of a recent, real-life industry failure of a heat exchanger due to a suspected internal detonation is discussed. Explicit, three-dimensional blast analysis is performed on the heat exchanger in question, and an internal detonation is simulated to reasonably replicate the considerable damage actually observed in the field. This analysis permits the determination of an approximate amount of concentrated product that caused the accidental explosion; that is, the plausible equivalent amount of explosives is back-calculated based on the predicted damage to the finite element model of the equipment in question. Computational iterations of varying charge amounts are performed and the predicted amount of permanent damage is documented so sensitivity to the hypothesized charge amount can be quantified. Furthermore, explicit blast analysis of nearby equipment is performed. In this investigation, computational results for both the heat exchanger (subjected to internal blast loading) and surrounding equipment (subjected to external blast loading) are in good agreement with the measured plastic deformations and failure modes that were actually observed in the field. Commentary on the likely detonation event that caused the significant damage observed is provided. Additionally, an advanced finite element failure criterion that is driven by plastic yielding is employed where portions of the computational model are removed from the simulation once a user-defined strain threshold is reached. This approach facilitates simulation of the gross heat exchanger pressure boundary failure actually observed in this case. The explicit finite element based analyses discussed in this study reasonably predict the structural response and damage characteristics corresponding to a recent, real-life industry failure." @default.
- W2022199772 created "2016-06-24" @default.
- W2022199772 creator A5008064718 @default.
- W2022199772 date "2014-07-20" @default.
- W2022199772 modified "2023-09-25" @default.
- W2022199772 title "Using Explicit Finite Element Analysis to Simulate the Structural Damage Associated With an Internal Detonation in a Heat Exchanger" @default.
- W2022199772 cites W124326965 @default.
- W2022199772 cites W1534293682 @default.
- W2022199772 cites W1545563298 @default.
- W2022199772 cites W163096460 @default.
- W2022199772 cites W1964151330 @default.
- W2022199772 cites W1981405456 @default.
- W2022199772 cites W1984081425 @default.
- W2022199772 cites W1994275398 @default.
- W2022199772 cites W2004967386 @default.
- W2022199772 cites W2008389921 @default.
- W2022199772 cites W2034415421 @default.
- W2022199772 cites W2037285386 @default.
- W2022199772 cites W2047407201 @default.
- W2022199772 cites W2070990615 @default.
- W2022199772 cites W2074208564 @default.
- W2022199772 cites W2079279096 @default.
- W2022199772 cites W2081493400 @default.
- W2022199772 cites W2094655155 @default.
- W2022199772 cites W2099901606 @default.
- W2022199772 cites W2109071933 @default.
- W2022199772 cites W2114850857 @default.
- W2022199772 cites W2121051665 @default.
- W2022199772 cites W2124146253 @default.
- W2022199772 cites W2129888931 @default.
- W2022199772 cites W2158369624 @default.
- W2022199772 cites W2183016235 @default.
- W2022199772 cites W2301790762 @default.
- W2022199772 cites W2331183105 @default.
- W2022199772 cites W2337981553 @default.
- W2022199772 cites W2497002991 @default.
- W2022199772 cites W2555243433 @default.
- W2022199772 cites W2398871445 @default.
- W2022199772 cites W3003391424 @default.
- W2022199772 doi "https://doi.org/10.1115/pvp2014-28893" @default.
- W2022199772 hasPublicationYear "2014" @default.
- W2022199772 type Work @default.
- W2022199772 sameAs 2022199772 @default.
- W2022199772 citedByCount "1" @default.
- W2022199772 countsByYear W20221997722020 @default.
- W2022199772 crossrefType "proceedings-article" @default.
- W2022199772 hasAuthorship W2022199772A5008064718 @default.
- W2022199772 hasConcept C107706546 @default.
- W2022199772 hasConcept C121332964 @default.
- W2022199772 hasConcept C127413603 @default.
- W2022199772 hasConcept C129716092 @default.
- W2022199772 hasConcept C131721965 @default.
- W2022199772 hasConcept C135628077 @default.
- W2022199772 hasConcept C154238967 @default.
- W2022199772 hasConcept C159985019 @default.
- W2022199772 hasConcept C178790620 @default.
- W2022199772 hasConcept C185592680 @default.
- W2022199772 hasConcept C18747710 @default.
- W2022199772 hasConcept C192562407 @default.
- W2022199772 hasConcept C203397868 @default.
- W2022199772 hasConcept C29452850 @default.
- W2022199772 hasConcept C57879066 @default.
- W2022199772 hasConcept C66938386 @default.
- W2022199772 hasConcept C78519656 @default.
- W2022199772 hasConcept C97355855 @default.
- W2022199772 hasConceptScore W2022199772C107706546 @default.
- W2022199772 hasConceptScore W2022199772C121332964 @default.
- W2022199772 hasConceptScore W2022199772C127413603 @default.
- W2022199772 hasConceptScore W2022199772C129716092 @default.
- W2022199772 hasConceptScore W2022199772C131721965 @default.
- W2022199772 hasConceptScore W2022199772C135628077 @default.
- W2022199772 hasConceptScore W2022199772C154238967 @default.
- W2022199772 hasConceptScore W2022199772C159985019 @default.
- W2022199772 hasConceptScore W2022199772C178790620 @default.
- W2022199772 hasConceptScore W2022199772C185592680 @default.
- W2022199772 hasConceptScore W2022199772C18747710 @default.
- W2022199772 hasConceptScore W2022199772C192562407 @default.
- W2022199772 hasConceptScore W2022199772C203397868 @default.
- W2022199772 hasConceptScore W2022199772C29452850 @default.
- W2022199772 hasConceptScore W2022199772C57879066 @default.
- W2022199772 hasConceptScore W2022199772C66938386 @default.
- W2022199772 hasConceptScore W2022199772C78519656 @default.
- W2022199772 hasConceptScore W2022199772C97355855 @default.
- W2022199772 hasLocation W20221997721 @default.
- W2022199772 hasOpenAccess W2022199772 @default.
- W2022199772 hasPrimaryLocation W20221997721 @default.
- W2022199772 hasRelatedWork W2005825702 @default.
- W2022199772 hasRelatedWork W2023141284 @default.
- W2022199772 hasRelatedWork W2032145126 @default.
- W2022199772 hasRelatedWork W2036894340 @default.
- W2022199772 hasRelatedWork W2095224461 @default.
- W2022199772 hasRelatedWork W2290212908 @default.
- W2022199772 hasRelatedWork W2314534746 @default.
- W2022199772 hasRelatedWork W2331183105 @default.
- W2022199772 hasRelatedWork W2501472776 @default.
- W2022199772 hasRelatedWork W2792557884 @default.
- W2022199772 hasRelatedWork W2895007647 @default.
- W2022199772 hasRelatedWork W2949815555 @default.
- W2022199772 hasRelatedWork W2969256909 @default.
- W2022199772 hasRelatedWork W2984064855 @default.