Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022201684> ?p ?o ?g. }
- W2022201684 endingPage "166" @default.
- W2022201684 startingPage "148" @default.
- W2022201684 abstract "The urban transition that has emerged over the past quarter century poses new challenges for mapping land cover/land use change (LCLUC). The growing archives of imagery from various earth-observing satellites have stimulated the development of innovative methods for change detection in long-term time series. We tested two different multi-temporal remote sensing datasets and techniques for mapping the urban transition. Using the Red River Delta of Vietnam as a case study, we compared supervised classification of dense time stacks of Landsat data with trend analyses of an annual series of night-time lights (NTL) data from the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS). The results of each method were corroborated through qualitative and quantitative GIS analyses. We found that these two approaches can be used synergistically, combining the advantages of each to provide a fuller understanding of the urban transition at different spatial scales." @default.
- W2022201684 created "2016-06-24" @default.
- W2022201684 creator A5013858852 @default.
- W2022201684 creator A5029690276 @default.
- W2022201684 creator A5040119893 @default.
- W2022201684 creator A5052101668 @default.
- W2022201684 creator A5061991816 @default.
- W2022201684 date "2014-02-12" @default.
- W2022201684 modified "2023-09-27" @default.
- W2022201684 title "Mapping Urban Transitions Using Multi-Temporal Landsat and DMSP-OLS Night-Time Lights Imagery of the Red River Delta in Vietnam" @default.
- W2022201684 cites W1516301739 @default.
- W2022201684 cites W1969223470 @default.
- W2022201684 cites W1972923945 @default.
- W2022201684 cites W1975642551 @default.
- W2022201684 cites W1978145340 @default.
- W2022201684 cites W1983078406 @default.
- W2022201684 cites W1991995284 @default.
- W2022201684 cites W2014970225 @default.
- W2022201684 cites W2016943428 @default.
- W2022201684 cites W2023693832 @default.
- W2022201684 cites W2025411670 @default.
- W2022201684 cites W2034906331 @default.
- W2022201684 cites W2044020331 @default.
- W2022201684 cites W2049643747 @default.
- W2022201684 cites W2063907334 @default.
- W2022201684 cites W2069624290 @default.
- W2022201684 cites W2069882289 @default.
- W2022201684 cites W2094640919 @default.
- W2022201684 cites W2097542451 @default.
- W2022201684 cites W2118869136 @default.
- W2022201684 cites W2125325727 @default.
- W2022201684 cites W2133941557 @default.
- W2022201684 cites W2137341666 @default.
- W2022201684 cites W2138973222 @default.
- W2022201684 cites W2153635508 @default.
- W2022201684 cites W2157675604 @default.
- W2022201684 cites W2167742631 @default.
- W2022201684 cites W2180682969 @default.
- W2022201684 cites W4376595762 @default.
- W2022201684 cites W3150806421 @default.
- W2022201684 doi "https://doi.org/10.3390/land3010148" @default.
- W2022201684 hasPublicationYear "2014" @default.
- W2022201684 type Work @default.
- W2022201684 sameAs 2022201684 @default.
- W2022201684 citedByCount "36" @default.
- W2022201684 countsByYear W20222016842014 @default.
- W2022201684 countsByYear W20222016842015 @default.
- W2022201684 countsByYear W20222016842016 @default.
- W2022201684 countsByYear W20222016842017 @default.
- W2022201684 countsByYear W20222016842018 @default.
- W2022201684 countsByYear W20222016842019 @default.
- W2022201684 countsByYear W20222016842020 @default.
- W2022201684 countsByYear W20222016842021 @default.
- W2022201684 countsByYear W20222016842022 @default.
- W2022201684 crossrefType "journal-article" @default.
- W2022201684 hasAuthorship W2022201684A5013858852 @default.
- W2022201684 hasAuthorship W2022201684A5029690276 @default.
- W2022201684 hasAuthorship W2022201684A5040119893 @default.
- W2022201684 hasAuthorship W2022201684A5052101668 @default.
- W2022201684 hasAuthorship W2022201684A5061991816 @default.
- W2022201684 hasBestOaLocation W20222016841 @default.
- W2022201684 hasConcept C100970517 @default.
- W2022201684 hasConcept C111368507 @default.
- W2022201684 hasConcept C119857082 @default.
- W2022201684 hasConcept C127313418 @default.
- W2022201684 hasConcept C127413603 @default.
- W2022201684 hasConcept C132651083 @default.
- W2022201684 hasConcept C135114317 @default.
- W2022201684 hasConcept C146978453 @default.
- W2022201684 hasConcept C151406439 @default.
- W2022201684 hasConcept C153294291 @default.
- W2022201684 hasConcept C18903297 @default.
- W2022201684 hasConcept C19269812 @default.
- W2022201684 hasConcept C199491958 @default.
- W2022201684 hasConcept C203595873 @default.
- W2022201684 hasConcept C205649164 @default.
- W2022201684 hasConcept C2778102629 @default.
- W2022201684 hasConcept C2778751583 @default.
- W2022201684 hasConcept C2780648208 @default.
- W2022201684 hasConcept C2989469682 @default.
- W2022201684 hasConcept C39432304 @default.
- W2022201684 hasConcept C41008148 @default.
- W2022201684 hasConcept C4792198 @default.
- W2022201684 hasConcept C5072461 @default.
- W2022201684 hasConcept C58640448 @default.
- W2022201684 hasConcept C62649853 @default.
- W2022201684 hasConcept C86803240 @default.
- W2022201684 hasConceptScore W2022201684C100970517 @default.
- W2022201684 hasConceptScore W2022201684C111368507 @default.
- W2022201684 hasConceptScore W2022201684C119857082 @default.
- W2022201684 hasConceptScore W2022201684C127313418 @default.
- W2022201684 hasConceptScore W2022201684C127413603 @default.
- W2022201684 hasConceptScore W2022201684C132651083 @default.
- W2022201684 hasConceptScore W2022201684C135114317 @default.
- W2022201684 hasConceptScore W2022201684C146978453 @default.
- W2022201684 hasConceptScore W2022201684C151406439 @default.
- W2022201684 hasConceptScore W2022201684C153294291 @default.
- W2022201684 hasConceptScore W2022201684C18903297 @default.