Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022202258> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2022202258 endingPage "114" @default.
- W2022202258 startingPage "71" @default.
- W2022202258 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper X Subscript upper T Baseline comma sigma Subscript upper T Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>({X_T},{sigma _T})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a shift of finite type, and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G equals a u t left-parenthesis sigma Subscript upper T Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>aut</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>G = operatorname {aut} ({sigma _T})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the group of homeomorphisms of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{X_T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> commuting with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{sigma _T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We investigate the algebraic properties of the countable group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the dynamics of its action on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{X_T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and associated spaces. Using marker constructions, we show <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains many groups, such as the free group on two generators. However, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is residually finite, so does not contain divisible groups or the infinite symmetric group. The doubly exponential growth rate of the number of automorphisms depending on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coordinates leads to a new and nontrivial topological invariant of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{sigma _T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose exact value is not known. We prove that, modulo a few points of low period, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts transitively on the set of points with least <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{sigma _T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-period <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic analysis, we generalize to most finite type shifts a result of Boyle and Krieger that the gyration function of a full shift has infinite order. The action of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the dimension group of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript upper T> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{sigma _T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is investigated. We show there are no proper infinite compact <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant sets. We give a complete characterization of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbit closure of a continuous probability measure, and deduce that the only continuous <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant measure is that of maximal entropy. Examples, questions, and problems complement our analysis, and we conclude with a brief survey of some remaining open problems." @default.
- W2022202258 created "2016-06-24" @default.
- W2022202258 creator A5015520687 @default.
- W2022202258 creator A5050910338 @default.
- W2022202258 creator A5072966287 @default.
- W2022202258 date "1988-01-01" @default.
- W2022202258 modified "2023-10-02" @default.
- W2022202258 title "The automorphism group of a shift of finite type" @default.
- W2022202258 cites W114942378 @default.
- W2022202258 cites W1503074869 @default.
- W2022202258 cites W1532303937 @default.
- W2022202258 cites W1974382727 @default.
- W2022202258 cites W1974792589 @default.
- W2022202258 cites W1990450610 @default.
- W2022202258 cites W2000270556 @default.
- W2022202258 cites W2004269411 @default.
- W2022202258 cites W2011894135 @default.
- W2022202258 cites W2014808774 @default.
- W2022202258 cites W2045672556 @default.
- W2022202258 cites W2050453090 @default.
- W2022202258 cites W2054601674 @default.
- W2022202258 cites W2065321451 @default.
- W2022202258 cites W2084984742 @default.
- W2022202258 cites W2103604124 @default.
- W2022202258 cites W2117263186 @default.
- W2022202258 cites W2126185163 @default.
- W2022202258 cites W2134584331 @default.
- W2022202258 cites W2151651505 @default.
- W2022202258 cites W2165253422 @default.
- W2022202258 cites W2329142400 @default.
- W2022202258 cites W4212928962 @default.
- W2022202258 cites W4231009334 @default.
- W2022202258 cites W4231339984 @default.
- W2022202258 cites W4236579804 @default.
- W2022202258 cites W4239220612 @default.
- W2022202258 cites W4239711349 @default.
- W2022202258 doi "https://doi.org/10.1090/s0002-9947-1988-0927684-2" @default.
- W2022202258 hasPublicationYear "1988" @default.
- W2022202258 type Work @default.
- W2022202258 sameAs 2022202258 @default.
- W2022202258 citedByCount "138" @default.
- W2022202258 countsByYear W20222022582012 @default.
- W2022202258 countsByYear W20222022582013 @default.
- W2022202258 countsByYear W20222022582014 @default.
- W2022202258 countsByYear W20222022582015 @default.
- W2022202258 countsByYear W20222022582016 @default.
- W2022202258 countsByYear W20222022582017 @default.
- W2022202258 countsByYear W20222022582018 @default.
- W2022202258 countsByYear W20222022582019 @default.
- W2022202258 countsByYear W20222022582020 @default.
- W2022202258 countsByYear W20222022582021 @default.
- W2022202258 countsByYear W20222022582022 @default.
- W2022202258 countsByYear W20222022582023 @default.
- W2022202258 crossrefType "journal-article" @default.
- W2022202258 hasAuthorship W2022202258A5015520687 @default.
- W2022202258 hasAuthorship W2022202258A5050910338 @default.
- W2022202258 hasAuthorship W2022202258A5072966287 @default.
- W2022202258 hasBestOaLocation W20222022581 @default.
- W2022202258 hasConcept C11413529 @default.
- W2022202258 hasConcept C154945302 @default.
- W2022202258 hasConcept C41008148 @default.
- W2022202258 hasConceptScore W2022202258C11413529 @default.
- W2022202258 hasConceptScore W2022202258C154945302 @default.
- W2022202258 hasConceptScore W2022202258C41008148 @default.
- W2022202258 hasIssue "1" @default.
- W2022202258 hasLocation W20222022581 @default.
- W2022202258 hasOpenAccess W2022202258 @default.
- W2022202258 hasPrimaryLocation W20222022581 @default.
- W2022202258 hasRelatedWork W2051487156 @default.
- W2022202258 hasRelatedWork W2073681303 @default.
- W2022202258 hasRelatedWork W2317200988 @default.
- W2022202258 hasRelatedWork W2358668433 @default.
- W2022202258 hasRelatedWork W2376932109 @default.
- W2022202258 hasRelatedWork W2382290278 @default.
- W2022202258 hasRelatedWork W2386767533 @default.
- W2022202258 hasRelatedWork W2390279801 @default.
- W2022202258 hasRelatedWork W2748952813 @default.
- W2022202258 hasRelatedWork W2899084033 @default.
- W2022202258 hasVolume "306" @default.
- W2022202258 isParatext "false" @default.
- W2022202258 isRetracted "false" @default.
- W2022202258 magId "2022202258" @default.
- W2022202258 workType "article" @default.