Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022202861> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2022202861 endingPage "636" @default.
- W2022202861 startingPage "632" @default.
- W2022202861 abstract "No AccessTechnical NoteExact Analytical Solution on Convective Heat Transfer of Isothermal PipesM. Norouzi and M. DavoodiM. NorouziMechanical Engineering Department, Shahrood University of Technology, 361 9995161 Shahrood, Iran*Assistant Professor, Mechanical Engineering Department, P.O. Box 316; (Corresponding Author).Search for more papers by this author and M. DavoodiMechanical Engineering Department, Shahrood University of Technology, 361 9995161 Shahrood, Iran†Master of Science Student, Mechanical Engineering Department; .Search for more papers by this authorPublished Online:26 Feb 2015https://doi.org/10.2514/1.T4495SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Shah R. K., “Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry,” International Journal of Heat and Mass Transfer, Vol. 18, Nos. 7–8, 1975, pp. 849–862. doi:https://doi.org/10.1016/0017-9310(75)90176-3 IJHMAK 0017-9310 CrossrefGoogle Scholar[2] Shah R. K. and London A. L., “Laminar Flow Forced Convection in Ducts,” Academic Press, New York, 1978, p. 237. Google Scholar[3] Lei Q. M. and Trupp A. C., “Further Analysis of Laminar Flow Heat Transfer in Circular Sector Ducts,” ASME Journal of Heat Transfer, Vol. 111, No. 4, 1989, pp. 1088–1090. doi:https://doi.org/10.1115/1.3250773 CrossrefGoogle Scholar[4] Chung B. T. F. and Hsia R. P., “Laminar Flow Developing Heat Transfer in Circular Sector Ducts with H1 and H2 Boundary Conditions,” Heat Transfer Engineering, Vol. 15, No. 4, 1994, pp. 56–65. doi:https://doi.org/10.1080/01457639408939837 HTEND2 0145-7632 CrossrefGoogle Scholar[5] Lin M. J., Wang Q. W. and Tao Q. W., “Developing Laminar Flow and Heat Transfer in Annular-Sector Ducts,” Heat Transfer Engineering, Vol. 21, No. 2, 2000, pp. 53–61. doi:https://doi.org/10.1080/014576300271022 HTEND2 0145-7632 CrossrefGoogle Scholar[6] Sieder E. N. and Tate G. E., “Heat Transfer and Pressure Drop of Liquids in Tubes,” Industrial Engineering Chemistry, Vol. 28, No. 12, 1936, pp. 1429–1435. doi:https://doi.org/10.1021/ie50324a027 CrossrefGoogle Scholar[7] Morgan V. T., “The Overall Convective Heat Transfer from a Smooth Cylinder,” Advances in Heat Transfer, Vol. 11, 1975, pp. 199–264. AHTRAR 0065-2717 CrossrefGoogle Scholar[8] Churchill S. W. and Chu H. H. S., “Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder,” International Journal of Heat and Mass Transfer, Vol. 18, No. 9, 1975, pp. 1049–1053. doi:https://doi.org/10.1016/0017-9310(75)90222-7 IJHMAK 0017-9310 CrossrefGoogle Scholar[9] Whitaker S., “Forced Convection Heat Transfer Correlation for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres and Flow in Packed Bids and Tube Bundles,” American Institute of Chemical Engineers Journal, Vol. 18, No. 2, 1972, pp. 361–371. doi:https://doi.org/10.1002/aic.690180219 AICEAC 0001-1541 CrossrefGoogle Scholar[10] Cheng C. Y., “The Effect of Temperature-Dependent Viscosity on the Natural Convection Heat Transfer from a Horizontal Isothermal Cylinder of Elliptic Cross Section,” International Communication in Heat and Mass Transfer, Vol. 33, No. 8, 2006, pp. 1021–1028. doi:https://doi.org/10.1016/j.icheatmasstransfer.2006.02.019 CrossrefGoogle Scholar[11] Graetz L., “On the Heat Capacity of Fluids,” Annalen der Physik, Vol. 25, 1885, pp. 337–357. CrossrefGoogle Scholar[12] Hieber C. A. and Sreenivasan S. K., “Mixed Convection in an Isothermally Heated Horizontal Pipe,” International Journal of Heat and Mass Transfer, Vol. 17, No. 11, 1974, pp. 1337–1348. doi:https://doi.org/10.1016/0017-9310(74)90135-5 IJHMAK 0017-9310 CrossrefGoogle Scholar[13] Sparrow E. M. and Gregg J. L., “Laminar Free Convection Heat Transfer from the Outer Surface of a Vertical Circular Cylinder,” Transactions Journal of ASME, Vol. 78, No. 8, 1956, pp. 1823–1829. Google Scholar[14] Kuiken H. K., “Axisymmetric Free Convection Boundary Layer Flow Past Slender Bodies,” International Journal of Heat and Mass Transfer, Vol. 11, No. 7, 1968, pp. 1141–1153. doi:https://doi.org/10.1016/0017-9310(68)90031-8 IJHMAK 0017-9310 CrossrefGoogle Scholar[15] Fujii T. and Uehara H., “Laminar Natural Convective Heat Transfer from the Outer Surface of a Vertical Cylinder,” International Journal of Heat and Mass Transfer, Vol. 13, No. 3, 1970, pp. 607–615. doi:https://doi.org/10.1016/0017-9310(70)90155-9 IJHMAK 0017-9310 CrossrefGoogle Scholar[16] Herwig H., “The Effect of Variable Properties on Momentum and Heat Transfer in a Tube with Constant Heat Flux across the Wall,” International Journal of Heat and Mass Transfer, Vol. 28, No. 2, 1985, pp. 423–431. doi:https://doi.org/10.1016/0017-9310(85)90075-4 IJHMAK 0017-9310 CrossrefGoogle Scholar[17] Shahmardan M. M., Norouzi M., Kayhani M. H. and AmiriDelouei A., “An Exact Analytical Solution for Convective Heat Transfer in Rectangular Ducts,” Journal of Zhejiang University–Science A (Applied Physics & Engineering), Vol. 13, No. 10, 2012, pp. 768–781. doi:https://doi.org/10.1631/jzus.A1100122 CrossrefGoogle Scholar[18] Kays W. M. and Crawford M. E., Convection Heat and Mass Transfer, McGraw–Hill, New York, 1980, p. 309. Google Scholar[19] Abramowitz M. and Stegun I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965, p. 504. Google Scholar[20] Bateman H., Higher Transcendental Functions, McGraw–Hill, New York, 1953, p. 56. Google Scholar[21] Bejan A., Convection Heat Transfer, 2nd ed., Wiley, New York, 1995, p. 146. Google Scholar Previous article Next article" @default.
- W2022202861 created "2016-06-24" @default.
- W2022202861 creator A5045807015 @default.
- W2022202861 creator A5074388803 @default.
- W2022202861 date "2015-07-01" @default.
- W2022202861 modified "2023-09-25" @default.
- W2022202861 title "Exact Analytical Solution on Convective Heat Transfer of Isothermal Pipes" @default.
- W2022202861 cites W1611944612 @default.
- W2022202861 cites W1996666407 @default.
- W2022202861 cites W2004481029 @default.
- W2022202861 cites W2011039321 @default.
- W2022202861 cites W2030797739 @default.
- W2022202861 cites W2031556207 @default.
- W2022202861 cites W2043491184 @default.
- W2022202861 cites W2054686852 @default.
- W2022202861 cites W2056252583 @default.
- W2022202861 cites W2063938761 @default.
- W2022202861 cites W2071388215 @default.
- W2022202861 cites W2074976029 @default.
- W2022202861 cites W2079018910 @default.
- W2022202861 cites W2079146830 @default.
- W2022202861 cites W2095820356 @default.
- W2022202861 doi "https://doi.org/10.2514/1.t4495" @default.
- W2022202861 hasPublicationYear "2015" @default.
- W2022202861 type Work @default.
- W2022202861 sameAs 2022202861 @default.
- W2022202861 citedByCount "9" @default.
- W2022202861 countsByYear W20222028612016 @default.
- W2022202861 countsByYear W20222028612017 @default.
- W2022202861 countsByYear W20222028612018 @default.
- W2022202861 countsByYear W20222028612019 @default.
- W2022202861 countsByYear W20222028612020 @default.
- W2022202861 countsByYear W20222028612021 @default.
- W2022202861 countsByYear W20222028612023 @default.
- W2022202861 crossrefType "journal-article" @default.
- W2022202861 hasAuthorship W2022202861A5045807015 @default.
- W2022202861 hasAuthorship W2022202861A5074388803 @default.
- W2022202861 hasConcept C121332964 @default.
- W2022202861 hasConcept C127413603 @default.
- W2022202861 hasConcept C133347239 @default.
- W2022202861 hasConcept C192562407 @default.
- W2022202861 hasConcept C24561367 @default.
- W2022202861 hasConcept C41231900 @default.
- W2022202861 hasConcept C50517652 @default.
- W2022202861 hasConcept C57879066 @default.
- W2022202861 hasConcept C76563973 @default.
- W2022202861 hasConcept C78519656 @default.
- W2022202861 hasConcept C97355855 @default.
- W2022202861 hasConceptScore W2022202861C121332964 @default.
- W2022202861 hasConceptScore W2022202861C127413603 @default.
- W2022202861 hasConceptScore W2022202861C133347239 @default.
- W2022202861 hasConceptScore W2022202861C192562407 @default.
- W2022202861 hasConceptScore W2022202861C24561367 @default.
- W2022202861 hasConceptScore W2022202861C41231900 @default.
- W2022202861 hasConceptScore W2022202861C50517652 @default.
- W2022202861 hasConceptScore W2022202861C57879066 @default.
- W2022202861 hasConceptScore W2022202861C76563973 @default.
- W2022202861 hasConceptScore W2022202861C78519656 @default.
- W2022202861 hasConceptScore W2022202861C97355855 @default.
- W2022202861 hasIssue "3" @default.
- W2022202861 hasLocation W20222028611 @default.
- W2022202861 hasOpenAccess W2022202861 @default.
- W2022202861 hasPrimaryLocation W20222028611 @default.
- W2022202861 hasRelatedWork W1973014461 @default.
- W2022202861 hasRelatedWork W2043758363 @default.
- W2022202861 hasRelatedWork W2046849012 @default.
- W2022202861 hasRelatedWork W2094465209 @default.
- W2022202861 hasRelatedWork W2108589637 @default.
- W2022202861 hasRelatedWork W2319467277 @default.
- W2022202861 hasRelatedWork W2354299138 @default.
- W2022202861 hasRelatedWork W2762049839 @default.
- W2022202861 hasRelatedWork W4206922885 @default.
- W2022202861 hasRelatedWork W2472938585 @default.
- W2022202861 hasVolume "29" @default.
- W2022202861 isParatext "false" @default.
- W2022202861 isRetracted "false" @default.
- W2022202861 magId "2022202861" @default.
- W2022202861 workType "article" @default.