Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022204818> ?p ?o ?g. }
- W2022204818 endingPage "43" @default.
- W2022204818 startingPage "28" @default.
- W2022204818 abstract "In the former “Eastern Bloc” countries, there have been dramatic changes in forest disturbance and forest recovery rates since the collapse of the Soviet Union, due to the transition to open-market economies, and the recent economic crisis. Unfortunately though, Eastern European countries collected their forest statistics inconsistently, and their boundaries have changed, making it difficult to analyze forest dynamics over time. Our goal here was to consistently quantify forest cover change across Eastern Europe since the 1980s based on the Landsat image archive. We developed an algorithm to simultaneously process data from different Landsat platforms and sensors (TM and ETM +) to map annual forest cover loss and decadal forest cover gain. We processed 59,539 Landsat images for 527 footprints across Eastern Europe and European Russia. Our results were highly accurate, with gross forest loss producer's and user's accuracy of > 88% and > 89%, respectively, and gross forest gain producer's and user's accuracy of > 75% and > 91%, based on a sample of probability-based validation points. We found substantial changes in the forest cover of Eastern Europe. Net forest cover increased from 1985 to 2012 by 4.7% across the region, but decreased in Estonia and Latvia. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Timber harvesting was the main cause of forest loss, accompanied by some insect defoliation and forest conversion, while only 7.4% of the total forest cover loss was due to large-scale wildfires and windstorms. Overall, the countries of Eastern Europe experienced constant levels or declines in forest loss after the collapse of socialism in the late 1980s, but a pronounced increase in loss in the early 2000s. By the late 2000s, however, the global economic crisis coincided with reduced timber harvesting in most countries, except Poland, Czech Republic, Slovakia, and the Baltic states. Most forest disturbance did not result in a permanent forest loss during our study period. Indeed, forest generally recovered fast and only 12% of the areas of forest loss prior to 1995 had not yet recovered by 2012. Our results allow national and sub-national level analysis and are available on-line ( http://glad.geog.umd.edu/europe/ ) to serve as a baseline for further analyses of forest dynamics and its drivers. • Annual quantification of forest dynamics for 27 years performed with high accuracy • Results show spatial and temporal variation of forest cover change. • Wall-to-wall forest dynamics maps available at http://glad.geog.umd.edu/europe/ • Overall, forest cover increased by 4.7%, but decreased in some regions. • Forest dynamics mirrored the collapse of the USSR and the recent economic crisis." @default.
- W2022204818 created "2016-06-24" @default.
- W2022204818 creator A5001796223 @default.
- W2022204818 creator A5006996458 @default.
- W2022204818 creator A5016861177 @default.
- W2022204818 creator A5028557559 @default.
- W2022204818 creator A5074759135 @default.
- W2022204818 creator A5077878098 @default.
- W2022204818 creator A5090819149 @default.
- W2022204818 date "2015-03-01" @default.
- W2022204818 modified "2023-10-12" @default.
- W2022204818 title "Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive" @default.
- W2022204818 cites W1967575690 @default.
- W2022204818 cites W1969834758 @default.
- W2022204818 cites W1970253947 @default.
- W2022204818 cites W1978449773 @default.
- W2022204818 cites W1978617972 @default.
- W2022204818 cites W1979644084 @default.
- W2022204818 cites W1981213426 @default.
- W2022204818 cites W1983097678 @default.
- W2022204818 cites W1994577438 @default.
- W2022204818 cites W1996656563 @default.
- W2022204818 cites W2000853885 @default.
- W2022204818 cites W2006429183 @default.
- W2022204818 cites W2011500029 @default.
- W2022204818 cites W2022078304 @default.
- W2022204818 cites W2029058476 @default.
- W2022204818 cites W2039497481 @default.
- W2022204818 cites W2052734169 @default.
- W2022204818 cites W2060745228 @default.
- W2022204818 cites W2069940675 @default.
- W2022204818 cites W2074222846 @default.
- W2022204818 cites W2077288993 @default.
- W2022204818 cites W2079873262 @default.
- W2022204818 cites W2087965082 @default.
- W2022204818 cites W2088941391 @default.
- W2022204818 cites W2095472131 @default.
- W2022204818 cites W2097170725 @default.
- W2022204818 cites W2099574804 @default.
- W2022204818 cites W2100930549 @default.
- W2022204818 cites W2103411634 @default.
- W2022204818 cites W2117706739 @default.
- W2022204818 cites W2118364838 @default.
- W2022204818 cites W2130037317 @default.
- W2022204818 cites W2134795379 @default.
- W2022204818 cites W2134860124 @default.
- W2022204818 cites W2136213540 @default.
- W2022204818 cites W2137155271 @default.
- W2022204818 cites W2140315029 @default.
- W2022204818 cites W2146249080 @default.
- W2022204818 cites W2149019675 @default.
- W2022204818 cites W2152176347 @default.
- W2022204818 cites W2158854610 @default.
- W2022204818 cites W2162775815 @default.
- W2022204818 cites W2169490017 @default.
- W2022204818 cites W2891096626 @default.
- W2022204818 cites W4212883601 @default.
- W2022204818 doi "https://doi.org/10.1016/j.rse.2014.11.027" @default.
- W2022204818 hasPublicationYear "2015" @default.
- W2022204818 type Work @default.
- W2022204818 sameAs 2022204818 @default.
- W2022204818 citedByCount "214" @default.
- W2022204818 countsByYear W20222048182015 @default.
- W2022204818 countsByYear W20222048182016 @default.
- W2022204818 countsByYear W20222048182017 @default.
- W2022204818 countsByYear W20222048182018 @default.
- W2022204818 countsByYear W20222048182019 @default.
- W2022204818 countsByYear W20222048182020 @default.
- W2022204818 countsByYear W20222048182021 @default.
- W2022204818 countsByYear W20222048182022 @default.
- W2022204818 countsByYear W20222048182023 @default.
- W2022204818 crossrefType "journal-article" @default.
- W2022204818 hasAuthorship W2022204818A5001796223 @default.
- W2022204818 hasAuthorship W2022204818A5006996458 @default.
- W2022204818 hasAuthorship W2022204818A5016861177 @default.
- W2022204818 hasAuthorship W2022204818A5028557559 @default.
- W2022204818 hasAuthorship W2022204818A5074759135 @default.
- W2022204818 hasAuthorship W2022204818A5077878098 @default.
- W2022204818 hasAuthorship W2022204818A5090819149 @default.
- W2022204818 hasConcept C100970517 @default.
- W2022204818 hasConcept C105639569 @default.
- W2022204818 hasConcept C127413603 @default.
- W2022204818 hasConcept C144133560 @default.
- W2022204818 hasConcept C147103442 @default.
- W2022204818 hasConcept C18903297 @default.
- W2022204818 hasConcept C205649164 @default.
- W2022204818 hasConcept C2776107028 @default.
- W2022204818 hasConcept C2780428219 @default.
- W2022204818 hasConcept C28631016 @default.
- W2022204818 hasConcept C2910001868 @default.
- W2022204818 hasConcept C2986088632 @default.
- W2022204818 hasConcept C39432304 @default.
- W2022204818 hasConcept C54286561 @default.
- W2022204818 hasConcept C62649853 @default.
- W2022204818 hasConcept C78519656 @default.
- W2022204818 hasConcept C86803240 @default.
- W2022204818 hasConceptScore W2022204818C100970517 @default.
- W2022204818 hasConceptScore W2022204818C105639569 @default.