Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022211365> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2022211365 abstract "Abstract We study dispersion in porous media by tracking movement of a swarm of solute particles through a physically representative network model. We developed deterministic rules to trace paths of solute particles through the network. These rules yield flow streamlines through the network comparable to those obtained from a full solution of Stokes’ equation. In the absence of diffusion the paths of all solute particles are completely determined and reversible. We track the movement of solute particles on these paths to investigate dispersion caused by purely convective spreading at the pore scale. Then we superimpose diffusion and study its influence on dispersion. In this way we obtain for the first time an unequivocal assessment of the roles of convective spreading and diffusion in hydrodynamic dispersion through porous media. Alternative particle tracking algorithms that use a probabilistic choice of an out-flowing throat at a pore fail to quantify convective spreading accurately. For Fickian behavior of dispersion it is essential that all solute particles encounter a wide range of independent (and identically distributed) velocities. If plug flow occurs in the pore throats a solute particle can encounter a wide range of independent velocities because of velocity differences in pore throats and randomness of pore structure. Plug flow leads to a purely convective spreading that is asymptotically Fickian. Diffusion superimposed on plug flow acts independently of convective spreading causing dispersion to be simply the sum of convective spreading and diffusion. In plug flow hydrodynamic dispersion varies linearly with the pore-scale Peclet number. For a more realistic parabolic velocity profile in pore throats particles near the solid surface of the medium do not have independent velocities. Now purely convective spreading is non-Fickian. When diffusion is non-zero, solute particles can move away from the low velocity region near the solid surface into the main flow stream and subsequently dispersion again becomes asymptotically Fickian. Now dispersion is the result of an interaction between convection and diffusion and it results in a weak non-linear dependence of dispersion on Peclet number. The dispersion coefficients predicted by particle tracking through the network are in excellent agreement with the literature experimental data. We conclude that the essential phenomena giving rise to hydrodynamic dispersion observed in porous media are (i) stream splitting of the solute front at every pore, thus causing independence of particle velocities purely by convection, (ii) a velocity gradient within throats and (iii) diffusion. Taylor's dispersion in a capillary tube accounts for only the second and third of these phenomena, yielding a quadratic dependence of dispersion on Peclet number. Plug flow in the bonds of a physically representative network accounts for the only the first and third phenomena, resulting in a linear dependence of dispersion upon Peclet number." @default.
- W2022211365 created "2016-06-24" @default.
- W2022211365 creator A5017887191 @default.
- W2022211365 creator A5073661236 @default.
- W2022211365 creator A5077199293 @default.
- W2022211365 date "2008-09-21" @default.
- W2022211365 modified "2023-09-25" @default.
- W2022211365 title "Effect of Local Mixing on Dispersion" @default.
- W2022211365 cites W1636734757 @default.
- W2022211365 cites W1991282218 @default.
- W2022211365 cites W1992793474 @default.
- W2022211365 cites W1997306892 @default.
- W2022211365 cites W2000709807 @default.
- W2022211365 cites W2035834042 @default.
- W2022211365 cites W2042111398 @default.
- W2022211365 cites W2061820839 @default.
- W2022211365 cites W2068052371 @default.
- W2022211365 cites W2070002697 @default.
- W2022211365 cites W2137348095 @default.
- W2022211365 cites W2150920000 @default.
- W2022211365 cites W2162488624 @default.
- W2022211365 cites W2165114837 @default.
- W2022211365 doi "https://doi.org/10.2118/115961-ms" @default.
- W2022211365 hasPublicationYear "2008" @default.
- W2022211365 type Work @default.
- W2022211365 sameAs 2022211365 @default.
- W2022211365 citedByCount "6" @default.
- W2022211365 countsByYear W20222113652012 @default.
- W2022211365 countsByYear W20222113652014 @default.
- W2022211365 countsByYear W20222113652017 @default.
- W2022211365 countsByYear W20222113652018 @default.
- W2022211365 crossrefType "proceedings-article" @default.
- W2022211365 hasAuthorship W2022211365A5017887191 @default.
- W2022211365 hasAuthorship W2022211365A5073661236 @default.
- W2022211365 hasAuthorship W2022211365A5077199293 @default.
- W2022211365 hasConcept C105569014 @default.
- W2022211365 hasConcept C10899652 @default.
- W2022211365 hasConcept C111368507 @default.
- W2022211365 hasConcept C120665830 @default.
- W2022211365 hasConcept C121332964 @default.
- W2022211365 hasConcept C126530081 @default.
- W2022211365 hasConcept C127313418 @default.
- W2022211365 hasConcept C159985019 @default.
- W2022211365 hasConcept C177562468 @default.
- W2022211365 hasConcept C192562407 @default.
- W2022211365 hasConcept C204323151 @default.
- W2022211365 hasConcept C205684552 @default.
- W2022211365 hasConcept C2778517922 @default.
- W2022211365 hasConcept C38349280 @default.
- W2022211365 hasConcept C53403541 @default.
- W2022211365 hasConcept C57879066 @default.
- W2022211365 hasConcept C60439489 @default.
- W2022211365 hasConcept C6648577 @default.
- W2022211365 hasConcept C69357855 @default.
- W2022211365 hasConcept C97355855 @default.
- W2022211365 hasConceptScore W2022211365C105569014 @default.
- W2022211365 hasConceptScore W2022211365C10899652 @default.
- W2022211365 hasConceptScore W2022211365C111368507 @default.
- W2022211365 hasConceptScore W2022211365C120665830 @default.
- W2022211365 hasConceptScore W2022211365C121332964 @default.
- W2022211365 hasConceptScore W2022211365C126530081 @default.
- W2022211365 hasConceptScore W2022211365C127313418 @default.
- W2022211365 hasConceptScore W2022211365C159985019 @default.
- W2022211365 hasConceptScore W2022211365C177562468 @default.
- W2022211365 hasConceptScore W2022211365C192562407 @default.
- W2022211365 hasConceptScore W2022211365C204323151 @default.
- W2022211365 hasConceptScore W2022211365C205684552 @default.
- W2022211365 hasConceptScore W2022211365C2778517922 @default.
- W2022211365 hasConceptScore W2022211365C38349280 @default.
- W2022211365 hasConceptScore W2022211365C53403541 @default.
- W2022211365 hasConceptScore W2022211365C57879066 @default.
- W2022211365 hasConceptScore W2022211365C60439489 @default.
- W2022211365 hasConceptScore W2022211365C6648577 @default.
- W2022211365 hasConceptScore W2022211365C69357855 @default.
- W2022211365 hasConceptScore W2022211365C97355855 @default.
- W2022211365 hasLocation W20222113651 @default.
- W2022211365 hasOpenAccess W2022211365 @default.
- W2022211365 hasPrimaryLocation W20222113651 @default.
- W2022211365 hasRelatedWork W1504546858 @default.
- W2022211365 hasRelatedWork W1911172552 @default.
- W2022211365 hasRelatedWork W1987393045 @default.
- W2022211365 hasRelatedWork W2022728492 @default.
- W2022211365 hasRelatedWork W2027802296 @default.
- W2022211365 hasRelatedWork W2029863162 @default.
- W2022211365 hasRelatedWork W2046527038 @default.
- W2022211365 hasRelatedWork W2143868412 @default.
- W2022211365 hasRelatedWork W2416742812 @default.
- W2022211365 hasRelatedWork W3214947159 @default.
- W2022211365 isParatext "false" @default.
- W2022211365 isRetracted "false" @default.
- W2022211365 magId "2022211365" @default.
- W2022211365 workType "article" @default.