Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022216787> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2022216787 endingPage "1240005" @default.
- W2022216787 startingPage "1240005" @default.
- W2022216787 abstract "Ocean turbines are a promising new source of clean energy, but their remote and inhospitable environment (the open ocean) poses reliability challenges. Machine condition monitoring/prognostic health monitoring (MCM/PHM) systems assure the reliability of these turbines by detecting and predicting machine state. These MCM/PHM systems use sensor data (such as vibration information) to determine whether or not the machine is operating properly. However, not all sensor data corresponds to the machine state: some portions of the sensor signal are influenced by certain environmental conditions which do not directly relate to machine health. Therefore, models must be built which can detect system state regardless of these environmental operating conditions. The proposed baseline-differencing approach permits this by creating a baseline for different conditions (such that each baseline represents what the normal, healthy machine state looks like while in that operating condition) and using the difference of the observed data and this baseline to train and evaluate models. We present two case studies, both conducted on data from a dynamometer representing an ocean turbine, to demonstrate the improved predictive capabilities of models which incorporate baseline-differencing, compared to the models which use the nonbaselined data. The results show that significantly more high-quality models can be built with baseline-differencing." @default.
- W2022216787 created "2016-06-24" @default.
- W2022216787 creator A5047817565 @default.
- W2022216787 creator A5068114270 @default.
- W2022216787 creator A5089170562 @default.
- W2022216787 date "2012-12-01" @default.
- W2022216787 modified "2023-09-27" @default.
- W2022216787 title "BASELINE-DIFFERENCING: A NOVEL APPROACH FOR BUILDING GENERALIZABLE OCEAN TURBINE RELIABILITY MODELS" @default.
- W2022216787 cites W1570651648 @default.
- W2022216787 cites W1964765097 @default.
- W2022216787 cites W1973197541 @default.
- W2022216787 cites W1979576340 @default.
- W2022216787 cites W1992795012 @default.
- W2022216787 cites W2025333535 @default.
- W2022216787 cites W2048076701 @default.
- W2022216787 cites W2053269685 @default.
- W2022216787 cites W2088366011 @default.
- W2022216787 cites W2090794716 @default.
- W2022216787 cites W2108657028 @default.
- W2022216787 cites W2133990480 @default.
- W2022216787 cites W2147926935 @default.
- W2022216787 cites W2150249602 @default.
- W2022216787 cites W2150869884 @default.
- W2022216787 doi "https://doi.org/10.1142/s0218539312400050" @default.
- W2022216787 hasPublicationYear "2012" @default.
- W2022216787 type Work @default.
- W2022216787 sameAs 2022216787 @default.
- W2022216787 citedByCount "0" @default.
- W2022216787 crossrefType "journal-article" @default.
- W2022216787 hasAuthorship W2022216787A5047817565 @default.
- W2022216787 hasAuthorship W2022216787A5068114270 @default.
- W2022216787 hasAuthorship W2022216787A5089170562 @default.
- W2022216787 hasConcept C111368507 @default.
- W2022216787 hasConcept C119599485 @default.
- W2022216787 hasConcept C121332964 @default.
- W2022216787 hasConcept C12725497 @default.
- W2022216787 hasConcept C127313418 @default.
- W2022216787 hasConcept C127413603 @default.
- W2022216787 hasConcept C163258240 @default.
- W2022216787 hasConcept C200601418 @default.
- W2022216787 hasConcept C2775846686 @default.
- W2022216787 hasConcept C2778449969 @default.
- W2022216787 hasConcept C41008148 @default.
- W2022216787 hasConcept C43214815 @default.
- W2022216787 hasConcept C62520636 @default.
- W2022216787 hasConcept C78519656 @default.
- W2022216787 hasConcept C79403827 @default.
- W2022216787 hasConceptScore W2022216787C111368507 @default.
- W2022216787 hasConceptScore W2022216787C119599485 @default.
- W2022216787 hasConceptScore W2022216787C121332964 @default.
- W2022216787 hasConceptScore W2022216787C12725497 @default.
- W2022216787 hasConceptScore W2022216787C127313418 @default.
- W2022216787 hasConceptScore W2022216787C127413603 @default.
- W2022216787 hasConceptScore W2022216787C163258240 @default.
- W2022216787 hasConceptScore W2022216787C200601418 @default.
- W2022216787 hasConceptScore W2022216787C2775846686 @default.
- W2022216787 hasConceptScore W2022216787C2778449969 @default.
- W2022216787 hasConceptScore W2022216787C41008148 @default.
- W2022216787 hasConceptScore W2022216787C43214815 @default.
- W2022216787 hasConceptScore W2022216787C62520636 @default.
- W2022216787 hasConceptScore W2022216787C78519656 @default.
- W2022216787 hasConceptScore W2022216787C79403827 @default.
- W2022216787 hasIssue "06" @default.
- W2022216787 hasLocation W20222167871 @default.
- W2022216787 hasOpenAccess W2022216787 @default.
- W2022216787 hasPrimaryLocation W20222167871 @default.
- W2022216787 hasRelatedWork W13760145 @default.
- W2022216787 hasRelatedWork W1514850223 @default.
- W2022216787 hasRelatedWork W2026357201 @default.
- W2022216787 hasRelatedWork W2079987237 @default.
- W2022216787 hasRelatedWork W2186998401 @default.
- W2022216787 hasRelatedWork W2373081051 @default.
- W2022216787 hasRelatedWork W2381268304 @default.
- W2022216787 hasRelatedWork W2757281906 @default.
- W2022216787 hasRelatedWork W3121094097 @default.
- W2022216787 hasRelatedWork W8632879 @default.
- W2022216787 hasVolume "19" @default.
- W2022216787 isParatext "false" @default.
- W2022216787 isRetracted "false" @default.
- W2022216787 magId "2022216787" @default.
- W2022216787 workType "article" @default.