Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022230019> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2022230019 abstract "The Automatic License Plate Recognition (ALPR) is very important in the Intelligent Transportation System (ITS). In this paper we proposed an improved ALPR algorithm for Vietnam license plates (LP), which consists of three main modules: license plate location (LPL), character segmentation, character recognition. In the location work, we have improved algorithm based on edge detection, image subtraction, mathematic morphology to locate LP region, which considered removing noise. In the segmentation work, we have improved algorithm to get the segments in the LP by the peak-to-valley method in order to segment in digit images getting the two bounds of the each digit according to the statistical parameter. In the recognition work, we have used a Multi Layer Perceptron (MLP) neural network and back-propagation (BP) algorithm to recognize characters & numbers of the Vietnam LP, we used two networks for characters & numbers training with noises, in which the computing time and accuracy is improved. Our approach is more effective than some of the existing methods earlier and satisfied for Vietnam LP. We have been implemented on 600 images taken from actual scenes, different background such as light conditions (night and day), angles, illumination, size and type, colors, reflected light, dynamic conditions. The efficiency of the proposed approach is improved and average rate of accuracy of the one-row LP is 96.93%, two-row LP is 95.82%, higher than most of previous works." @default.
- W2022230019 created "2016-06-24" @default.
- W2022230019 creator A5021580006 @default.
- W2022230019 creator A5024791074 @default.
- W2022230019 creator A5038371607 @default.
- W2022230019 creator A5062971989 @default.
- W2022230019 date "2011-10-01" @default.
- W2022230019 modified "2023-10-18" @default.
- W2022230019 title "An Improved Method for Vietnam License Plate Location, Segmentation and Recognition" @default.
- W2022230019 cites W1978496554 @default.
- W2022230019 cites W2019876754 @default.
- W2022230019 cites W2036793532 @default.
- W2022230019 cites W2087105957 @default.
- W2022230019 cites W2112915975 @default.
- W2022230019 cites W2161216499 @default.
- W2022230019 doi "https://doi.org/10.1109/iccis.2011.79" @default.
- W2022230019 hasPublicationYear "2011" @default.
- W2022230019 type Work @default.
- W2022230019 sameAs 2022230019 @default.
- W2022230019 citedByCount "3" @default.
- W2022230019 countsByYear W20222300192017 @default.
- W2022230019 countsByYear W20222300192021 @default.
- W2022230019 countsByYear W20222300192022 @default.
- W2022230019 crossrefType "proceedings-article" @default.
- W2022230019 hasAuthorship W2022230019A5021580006 @default.
- W2022230019 hasAuthorship W2022230019A5024791074 @default.
- W2022230019 hasAuthorship W2022230019A5038371607 @default.
- W2022230019 hasAuthorship W2022230019A5062971989 @default.
- W2022230019 hasConcept C111919701 @default.
- W2022230019 hasConcept C115961682 @default.
- W2022230019 hasConcept C124504099 @default.
- W2022230019 hasConcept C153180895 @default.
- W2022230019 hasConcept C154945302 @default.
- W2022230019 hasConcept C160633673 @default.
- W2022230019 hasConcept C193536780 @default.
- W2022230019 hasConcept C2524010 @default.
- W2022230019 hasConcept C2780560020 @default.
- W2022230019 hasConcept C2780861071 @default.
- W2022230019 hasConcept C31972630 @default.
- W2022230019 hasConcept C32653426 @default.
- W2022230019 hasConcept C33923547 @default.
- W2022230019 hasConcept C41008148 @default.
- W2022230019 hasConcept C50644808 @default.
- W2022230019 hasConcept C546480517 @default.
- W2022230019 hasConcept C60908668 @default.
- W2022230019 hasConcept C89600930 @default.
- W2022230019 hasConcept C9417928 @default.
- W2022230019 hasConceptScore W2022230019C111919701 @default.
- W2022230019 hasConceptScore W2022230019C115961682 @default.
- W2022230019 hasConceptScore W2022230019C124504099 @default.
- W2022230019 hasConceptScore W2022230019C153180895 @default.
- W2022230019 hasConceptScore W2022230019C154945302 @default.
- W2022230019 hasConceptScore W2022230019C160633673 @default.
- W2022230019 hasConceptScore W2022230019C193536780 @default.
- W2022230019 hasConceptScore W2022230019C2524010 @default.
- W2022230019 hasConceptScore W2022230019C2780560020 @default.
- W2022230019 hasConceptScore W2022230019C2780861071 @default.
- W2022230019 hasConceptScore W2022230019C31972630 @default.
- W2022230019 hasConceptScore W2022230019C32653426 @default.
- W2022230019 hasConceptScore W2022230019C33923547 @default.
- W2022230019 hasConceptScore W2022230019C41008148 @default.
- W2022230019 hasConceptScore W2022230019C50644808 @default.
- W2022230019 hasConceptScore W2022230019C546480517 @default.
- W2022230019 hasConceptScore W2022230019C60908668 @default.
- W2022230019 hasConceptScore W2022230019C89600930 @default.
- W2022230019 hasConceptScore W2022230019C9417928 @default.
- W2022230019 hasLocation W20222300191 @default.
- W2022230019 hasOpenAccess W2022230019 @default.
- W2022230019 hasPrimaryLocation W20222300191 @default.
- W2022230019 hasRelatedWork W2008850236 @default.
- W2022230019 hasRelatedWork W2022230019 @default.
- W2022230019 hasRelatedWork W2104413101 @default.
- W2022230019 hasRelatedWork W2110230079 @default.
- W2022230019 hasRelatedWork W2127304305 @default.
- W2022230019 hasRelatedWork W2144155874 @default.
- W2022230019 hasRelatedWork W2293507287 @default.
- W2022230019 hasRelatedWork W2370025005 @default.
- W2022230019 hasRelatedWork W2536634271 @default.
- W2022230019 hasRelatedWork W2900348730 @default.
- W2022230019 isParatext "false" @default.
- W2022230019 isRetracted "false" @default.
- W2022230019 magId "2022230019" @default.
- W2022230019 workType "article" @default.