Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022235004> ?p ?o ?g. }
- W2022235004 endingPage "6069" @default.
- W2022235004 startingPage "6061" @default.
- W2022235004 abstract "Construction projects are, by their very nature, challenging; and project decision makers must work successfully within an environment that is frequently complex and fraught with uncertainty. As many decisions must be made intuitively based on limited information, successful decision making depends heavily on two factors, including the experience of the expert(s) involved and the quality of knowledge accumulated from previous experience. Knowledge, however, is subject to various factors that cause its value and accuracy to deteriorate. Research has demonstrated that artificial intelligence has the potential to overcome these factors. The Evolutionary Fuzzy Support Vector Machine Inference Model (EFSIM), an artificial intelligence hybrid system that fuses together fuzzy logic (FL), a support vector machine (SVM) and fast messy genetic algorithm (fmGA), represents an alternative approach to retaining and utilizing experiential knowledge. A fmGA is used as an optimization tool to search simultaneously for fittest membership functions, defuzzification parameter (dfp) and SVM hyperparameter (herein C and gamma, γ). Two simulations on actual construction management problems demonstrated the EFSIM to be an effective tool for solving various problems in the construction industry." @default.
- W2022235004 created "2016-06-24" @default.
- W2022235004 creator A5014879479 @default.
- W2022235004 creator A5074387638 @default.
- W2022235004 date "2010-08-01" @default.
- W2022235004 modified "2023-10-18" @default.
- W2022235004 title "Evolutionary fuzzy decision model for construction management using support vector machine" @default.
- W2022235004 cites W1502632659 @default.
- W2022235004 cites W1510073064 @default.
- W2022235004 cites W1525830085 @default.
- W2022235004 cites W1543810117 @default.
- W2022235004 cites W1560724230 @default.
- W2022235004 cites W1576520375 @default.
- W2022235004 cites W1583326420 @default.
- W2022235004 cites W1586313000 @default.
- W2022235004 cites W1604938182 @default.
- W2022235004 cites W1856122698 @default.
- W2022235004 cites W1898259180 @default.
- W2022235004 cites W1898316750 @default.
- W2022235004 cites W1966177091 @default.
- W2022235004 cites W1969973837 @default.
- W2022235004 cites W1974497276 @default.
- W2022235004 cites W1981551863 @default.
- W2022235004 cites W1994807229 @default.
- W2022235004 cites W2007163879 @default.
- W2022235004 cites W2024897438 @default.
- W2022235004 cites W2041280856 @default.
- W2022235004 cites W2066670127 @default.
- W2022235004 cites W2079847520 @default.
- W2022235004 cites W2082388496 @default.
- W2022235004 cites W2084818361 @default.
- W2022235004 cites W2086138538 @default.
- W2022235004 cites W2087122156 @default.
- W2022235004 cites W2093775238 @default.
- W2022235004 cites W2100801827 @default.
- W2022235004 cites W2104039636 @default.
- W2022235004 cites W2105490305 @default.
- W2022235004 cites W2109943925 @default.
- W2022235004 cites W2114327483 @default.
- W2022235004 cites W2118933129 @default.
- W2022235004 cites W2133772980 @default.
- W2022235004 cites W2139212933 @default.
- W2022235004 cites W2139565874 @default.
- W2022235004 cites W2142183404 @default.
- W2022235004 cites W2143879006 @default.
- W2022235004 cites W2145960214 @default.
- W2022235004 cites W2152216294 @default.
- W2022235004 cites W2155109570 @default.
- W2022235004 cites W2156909104 @default.
- W2022235004 cites W2171270694 @default.
- W2022235004 cites W2256588869 @default.
- W2022235004 cites W2479224257 @default.
- W2022235004 cites W2491932846 @default.
- W2022235004 cites W2912565176 @default.
- W2022235004 cites W3142229452 @default.
- W2022235004 cites W31584220 @default.
- W2022235004 cites W3193477162 @default.
- W2022235004 cites W329913983 @default.
- W2022235004 cites W651361611 @default.
- W2022235004 doi "https://doi.org/10.1016/j.eswa.2010.02.120" @default.
- W2022235004 hasPublicationYear "2010" @default.
- W2022235004 type Work @default.
- W2022235004 sameAs 2022235004 @default.
- W2022235004 citedByCount "38" @default.
- W2022235004 countsByYear W20222350042012 @default.
- W2022235004 countsByYear W20222350042013 @default.
- W2022235004 countsByYear W20222350042014 @default.
- W2022235004 countsByYear W20222350042015 @default.
- W2022235004 countsByYear W20222350042016 @default.
- W2022235004 countsByYear W20222350042017 @default.
- W2022235004 countsByYear W20222350042018 @default.
- W2022235004 countsByYear W20222350042019 @default.
- W2022235004 countsByYear W20222350042020 @default.
- W2022235004 countsByYear W20222350042021 @default.
- W2022235004 countsByYear W20222350042022 @default.
- W2022235004 countsByYear W20222350042023 @default.
- W2022235004 crossrefType "journal-article" @default.
- W2022235004 hasAuthorship W2022235004A5014879479 @default.
- W2022235004 hasAuthorship W2022235004A5074387638 @default.
- W2022235004 hasConcept C107327155 @default.
- W2022235004 hasConcept C119857082 @default.
- W2022235004 hasConcept C12267149 @default.
- W2022235004 hasConcept C124101348 @default.
- W2022235004 hasConcept C154945302 @default.
- W2022235004 hasConcept C41008148 @default.
- W2022235004 hasConcept C58166 @default.
- W2022235004 hasConcept C8880873 @default.
- W2022235004 hasConceptScore W2022235004C107327155 @default.
- W2022235004 hasConceptScore W2022235004C119857082 @default.
- W2022235004 hasConceptScore W2022235004C12267149 @default.
- W2022235004 hasConceptScore W2022235004C124101348 @default.
- W2022235004 hasConceptScore W2022235004C154945302 @default.
- W2022235004 hasConceptScore W2022235004C41008148 @default.
- W2022235004 hasConceptScore W2022235004C58166 @default.
- W2022235004 hasConceptScore W2022235004C8880873 @default.
- W2022235004 hasIssue "8" @default.
- W2022235004 hasLocation W20222350041 @default.
- W2022235004 hasOpenAccess W2022235004 @default.