Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022237464> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2022237464 endingPage "826" @default.
- W2022237464 startingPage "819" @default.
- W2022237464 abstract "In pattern recognition research, dimensionality reduction techniques are widely used since it may be difficult to recognize multidimensional data especially if the number of samples in a data set is not large comparing with the dimensionality of data space. Locality pursuit embedding (LPE) is a recently proposed method for unsupervised linear dimensionality reduction. LPE seeks to preserve the local structure, which is usually more significant than the global structure preserved by principal component analysis (PCA) and linear discriminant analysis (LDA). In this paper, we investigate its extension, called supervised locality pursuit embedding (SLPE), using class labels of data points to enhance its discriminant power in their mapping into a low dimensional space. We compare the proposed SLPE approach with traditional LPE, PCA and LDA methods on real-world data sets including handwritten digits, character data set and face images. Experimental results demonstrate that SLPE is superior to other three methods in terms of recognition accuracy." @default.
- W2022237464 created "2016-06-24" @default.
- W2022237464 creator A5054429473 @default.
- W2022237464 creator A5082260214 @default.
- W2022237464 date "2006-08-01" @default.
- W2022237464 modified "2023-09-25" @default.
- W2022237464 title "Supervised locality pursuit embedding for pattern classification" @default.
- W2022237464 cites W1821148229 @default.
- W2022237464 cites W1902027874 @default.
- W2022237464 cites W2001141328 @default.
- W2022237464 cites W2011174648 @default.
- W2022237464 cites W2012352340 @default.
- W2022237464 cites W2019020850 @default.
- W2022237464 cites W2031095833 @default.
- W2022237464 cites W2035782554 @default.
- W2022237464 cites W2053186076 @default.
- W2022237464 cites W2108470891 @default.
- W2022237464 cites W2116551122 @default.
- W2022237464 cites W2117553576 @default.
- W2022237464 cites W2121647436 @default.
- W2022237464 cites W2134935984 @default.
- W2022237464 cites W2138451337 @default.
- W2022237464 cites W2144990628 @default.
- W2022237464 cites W2153149612 @default.
- W2022237464 cites W2163999590 @default.
- W2022237464 cites W2164071167 @default.
- W2022237464 doi "https://doi.org/10.1016/j.imavis.2006.02.007" @default.
- W2022237464 hasPublicationYear "2006" @default.
- W2022237464 type Work @default.
- W2022237464 sameAs 2022237464 @default.
- W2022237464 citedByCount "12" @default.
- W2022237464 countsByYear W20222374642017 @default.
- W2022237464 countsByYear W20222374642021 @default.
- W2022237464 countsByYear W20222374642022 @default.
- W2022237464 crossrefType "journal-article" @default.
- W2022237464 hasAuthorship W2022237464A5054429473 @default.
- W2022237464 hasAuthorship W2022237464A5082260214 @default.
- W2022237464 hasConcept C111030470 @default.
- W2022237464 hasConcept C138885662 @default.
- W2022237464 hasConcept C153180895 @default.
- W2022237464 hasConcept C154945302 @default.
- W2022237464 hasConcept C21080849 @default.
- W2022237464 hasConcept C27438332 @default.
- W2022237464 hasConcept C2779808786 @default.
- W2022237464 hasConcept C31510193 @default.
- W2022237464 hasConcept C33923547 @default.
- W2022237464 hasConcept C41008148 @default.
- W2022237464 hasConcept C41608201 @default.
- W2022237464 hasConcept C41895202 @default.
- W2022237464 hasConcept C58489278 @default.
- W2022237464 hasConcept C69738355 @default.
- W2022237464 hasConcept C70518039 @default.
- W2022237464 hasConcept C78397625 @default.
- W2022237464 hasConceptScore W2022237464C111030470 @default.
- W2022237464 hasConceptScore W2022237464C138885662 @default.
- W2022237464 hasConceptScore W2022237464C153180895 @default.
- W2022237464 hasConceptScore W2022237464C154945302 @default.
- W2022237464 hasConceptScore W2022237464C21080849 @default.
- W2022237464 hasConceptScore W2022237464C27438332 @default.
- W2022237464 hasConceptScore W2022237464C2779808786 @default.
- W2022237464 hasConceptScore W2022237464C31510193 @default.
- W2022237464 hasConceptScore W2022237464C33923547 @default.
- W2022237464 hasConceptScore W2022237464C41008148 @default.
- W2022237464 hasConceptScore W2022237464C41608201 @default.
- W2022237464 hasConceptScore W2022237464C41895202 @default.
- W2022237464 hasConceptScore W2022237464C58489278 @default.
- W2022237464 hasConceptScore W2022237464C69738355 @default.
- W2022237464 hasConceptScore W2022237464C70518039 @default.
- W2022237464 hasConceptScore W2022237464C78397625 @default.
- W2022237464 hasIssue "8" @default.
- W2022237464 hasLocation W20222374641 @default.
- W2022237464 hasOpenAccess W2022237464 @default.
- W2022237464 hasPrimaryLocation W20222374641 @default.
- W2022237464 hasRelatedWork W13755666 @default.
- W2022237464 hasRelatedWork W198500362 @default.
- W2022237464 hasRelatedWork W2022237464 @default.
- W2022237464 hasRelatedWork W2075009482 @default.
- W2022237464 hasRelatedWork W2111149694 @default.
- W2022237464 hasRelatedWork W2124332660 @default.
- W2022237464 hasRelatedWork W2151015462 @default.
- W2022237464 hasRelatedWork W2370292837 @default.
- W2022237464 hasRelatedWork W2380927352 @default.
- W2022237464 hasRelatedWork W3147086955 @default.
- W2022237464 hasVolume "24" @default.
- W2022237464 isParatext "false" @default.
- W2022237464 isRetracted "false" @default.
- W2022237464 magId "2022237464" @default.
- W2022237464 workType "article" @default.