Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022237586> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2022237586 endingPage "33" @default.
- W2022237586 startingPage "25" @default.
- W2022237586 abstract "A bipartite graph G=(L,R;E) with at least one edge is said to be identifiable if for every vertex v∈L, the subgraph induced by its non-neighbors has a matching of cardinality |L|−1. This definition arises in the context of low-rank matrix factorization and is motivated by signal processing applications. An ℓ-subgraph of a bipartite graph G=(L,R;E) is an induced subgraph of G obtained by deleting from it some vertices in L together with all their neighbors. The Identifiable Subgraph problem is the problem of determining whether a given bipartite graph G=(L,R;E) contains an identifiable ℓ-subgraph. While the problem of finding a smallest set J⊆L that induces an identifiable ℓ-subgraph of G is NP-hard and also APX-hard, the complexity of the identifiable subgraph problem is still open. In this paper, we introduce and study the k-bounded Identifiable Subgraph problem. This is the variant of the Identifiable Subgraph problem in which the input bipartite graphs G=(L,R;E) are restricted to have the maximum degree of vertices in R bounded by k. We show that for k≥3, the k-bounded Identifiable Subgraph problem is as hard as the general case, while it becomes solvable in linear time for k≤2. Our proof is based on the notion of strongly cyclic graphs, that is, multigraphs with at least one edge such that for every vertex v, no connected component of the graph obtained by deleting v is a tree. We show that a bipartite graph G=(L,R;E) with maximum degree of vertices in R bounded by 2 is a no instance to the Identifiable Subgraph problem if and only if a multigraph naturally associated to it does not contain any strongly cyclic subgraph, and characterize such graphs in terms of finitely many minimal forbidden topological minors." @default.
- W2022237586 created "2016-06-24" @default.
- W2022237586 creator A5011646983 @default.
- W2022237586 creator A5027970574 @default.
- W2022237586 date "2015-02-01" @default.
- W2022237586 modified "2023-10-18" @default.
- W2022237586 title "On the complexity of the identifiable subgraph problem" @default.
- W2022237586 cites W1902027874 @default.
- W2022237586 cites W1963598624 @default.
- W2022237586 cites W1965012931 @default.
- W2022237586 cites W2005079828 @default.
- W2022237586 cites W2011039300 @default.
- W2022237586 cites W2028357390 @default.
- W2022237586 cites W2059372025 @default.
- W2022237586 cites W2069645361 @default.
- W2022237586 cites W2107209294 @default.
- W2022237586 cites W2113359929 @default.
- W2022237586 cites W2129759905 @default.
- W2022237586 cites W2137560895 @default.
- W2022237586 cites W2158085979 @default.
- W2022237586 cites W2565975765 @default.
- W2022237586 cites W2611093227 @default.
- W2022237586 cites W2740295114 @default.
- W2022237586 cites W2798588639 @default.
- W2022237586 cites W36639738 @default.
- W2022237586 doi "https://doi.org/10.1016/j.dam.2014.10.021" @default.
- W2022237586 hasPublicationYear "2015" @default.
- W2022237586 type Work @default.
- W2022237586 sameAs 2022237586 @default.
- W2022237586 citedByCount "1" @default.
- W2022237586 countsByYear W20222375862017 @default.
- W2022237586 crossrefType "journal-article" @default.
- W2022237586 hasAuthorship W2022237586A5011646983 @default.
- W2022237586 hasAuthorship W2022237586A5027970574 @default.
- W2022237586 hasBestOaLocation W20222375861 @default.
- W2022237586 hasConcept C114614502 @default.
- W2022237586 hasConcept C118615104 @default.
- W2022237586 hasConcept C128115575 @default.
- W2022237586 hasConcept C131992880 @default.
- W2022237586 hasConcept C132525143 @default.
- W2022237586 hasConcept C134306372 @default.
- W2022237586 hasConcept C149530733 @default.
- W2022237586 hasConcept C191241153 @default.
- W2022237586 hasConcept C197657726 @default.
- W2022237586 hasConcept C203776342 @default.
- W2022237586 hasConcept C22149727 @default.
- W2022237586 hasConcept C2778012994 @default.
- W2022237586 hasConcept C33923547 @default.
- W2022237586 hasConcept C34388435 @default.
- W2022237586 hasConcept C36038622 @default.
- W2022237586 hasConcept C80899671 @default.
- W2022237586 hasConceptScore W2022237586C114614502 @default.
- W2022237586 hasConceptScore W2022237586C118615104 @default.
- W2022237586 hasConceptScore W2022237586C128115575 @default.
- W2022237586 hasConceptScore W2022237586C131992880 @default.
- W2022237586 hasConceptScore W2022237586C132525143 @default.
- W2022237586 hasConceptScore W2022237586C134306372 @default.
- W2022237586 hasConceptScore W2022237586C149530733 @default.
- W2022237586 hasConceptScore W2022237586C191241153 @default.
- W2022237586 hasConceptScore W2022237586C197657726 @default.
- W2022237586 hasConceptScore W2022237586C203776342 @default.
- W2022237586 hasConceptScore W2022237586C22149727 @default.
- W2022237586 hasConceptScore W2022237586C2778012994 @default.
- W2022237586 hasConceptScore W2022237586C33923547 @default.
- W2022237586 hasConceptScore W2022237586C34388435 @default.
- W2022237586 hasConceptScore W2022237586C36038622 @default.
- W2022237586 hasConceptScore W2022237586C80899671 @default.
- W2022237586 hasFunder F4320322554 @default.
- W2022237586 hasLocation W20222375861 @default.
- W2022237586 hasOpenAccess W2022237586 @default.
- W2022237586 hasPrimaryLocation W20222375861 @default.
- W2022237586 hasRelatedWork W1922019929 @default.
- W2022237586 hasRelatedWork W2020601422 @default.
- W2022237586 hasRelatedWork W2032950096 @default.
- W2022237586 hasRelatedWork W2043134153 @default.
- W2022237586 hasRelatedWork W2082848707 @default.
- W2022237586 hasRelatedWork W2248415389 @default.
- W2022237586 hasRelatedWork W2252464404 @default.
- W2022237586 hasRelatedWork W2307034528 @default.
- W2022237586 hasRelatedWork W3107983929 @default.
- W2022237586 hasRelatedWork W4300575715 @default.
- W2022237586 hasVolume "182" @default.
- W2022237586 isParatext "false" @default.
- W2022237586 isRetracted "false" @default.
- W2022237586 magId "2022237586" @default.
- W2022237586 workType "article" @default.