Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022237952> ?p ?o ?g. }
- W2022237952 endingPage "1156" @default.
- W2022237952 startingPage "1143" @default.
- W2022237952 abstract "For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However, this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire q-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space." @default.
- W2022237952 created "2016-06-24" @default.
- W2022237952 creator A5008645118 @default.
- W2022237952 creator A5034377613 @default.
- W2022237952 creator A5037057278 @default.
- W2022237952 creator A5060926838 @default.
- W2022237952 creator A5069652684 @default.
- W2022237952 creator A5090829577 @default.
- W2022237952 date "2014-10-01" @default.
- W2022237952 modified "2023-09-30" @default.
- W2022237952 title "Multi-shell diffusion signal recovery from sparse measurements" @default.
- W2022237952 cites W136072923 @default.
- W2022237952 cites W1483514369 @default.
- W2022237952 cites W1489388295 @default.
- W2022237952 cites W1530581289 @default.
- W2022237952 cites W1536940815 @default.
- W2022237952 cites W1828403337 @default.
- W2022237952 cites W1864427772 @default.
- W2022237952 cites W1981176642 @default.
- W2022237952 cites W1991129928 @default.
- W2022237952 cites W1996287810 @default.
- W2022237952 cites W1997161422 @default.
- W2022237952 cites W2001422009 @default.
- W2022237952 cites W2006690959 @default.
- W2022237952 cites W2011181254 @default.
- W2022237952 cites W2027399910 @default.
- W2022237952 cites W2032254014 @default.
- W2022237952 cites W2038728518 @default.
- W2022237952 cites W2040812980 @default.
- W2022237952 cites W2041945552 @default.
- W2022237952 cites W2043377096 @default.
- W2022237952 cites W2044904021 @default.
- W2022237952 cites W2052179106 @default.
- W2022237952 cites W2053759320 @default.
- W2022237952 cites W2070881262 @default.
- W2022237952 cites W2081692118 @default.
- W2022237952 cites W2084761689 @default.
- W2022237952 cites W2100556411 @default.
- W2022237952 cites W2103955025 @default.
- W2022237952 cites W2107806811 @default.
- W2022237952 cites W2107861471 @default.
- W2022237952 cites W2114809469 @default.
- W2022237952 cites W2116823839 @default.
- W2022237952 cites W2122752532 @default.
- W2022237952 cites W2128261720 @default.
- W2022237952 cites W2138038593 @default.
- W2022237952 cites W2142058898 @default.
- W2022237952 cites W2145096794 @default.
- W2022237952 cites W2154869678 @default.
- W2022237952 cites W2159366244 @default.
- W2022237952 cites W2163397436 @default.
- W2022237952 cites W4249512175 @default.
- W2022237952 cites W4250955649 @default.
- W2022237952 cites W4292363360 @default.
- W2022237952 cites W2096559080 @default.
- W2022237952 doi "https://doi.org/10.1016/j.media.2014.06.003" @default.
- W2022237952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4145038" @default.
- W2022237952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25047866" @default.
- W2022237952 hasPublicationYear "2014" @default.
- W2022237952 type Work @default.
- W2022237952 sameAs 2022237952 @default.
- W2022237952 citedByCount "42" @default.
- W2022237952 countsByYear W20222379522015 @default.
- W2022237952 countsByYear W20222379522016 @default.
- W2022237952 countsByYear W20222379522017 @default.
- W2022237952 countsByYear W20222379522018 @default.
- W2022237952 countsByYear W20222379522019 @default.
- W2022237952 countsByYear W20222379522020 @default.
- W2022237952 countsByYear W20222379522021 @default.
- W2022237952 countsByYear W20222379522023 @default.
- W2022237952 crossrefType "journal-article" @default.
- W2022237952 hasAuthorship W2022237952A5008645118 @default.
- W2022237952 hasAuthorship W2022237952A5034377613 @default.
- W2022237952 hasAuthorship W2022237952A5037057278 @default.
- W2022237952 hasAuthorship W2022237952A5060926838 @default.
- W2022237952 hasAuthorship W2022237952A5069652684 @default.
- W2022237952 hasAuthorship W2022237952A5090829577 @default.
- W2022237952 hasBestOaLocation W20222379522 @default.
- W2022237952 hasConcept C11413529 @default.
- W2022237952 hasConcept C121332964 @default.
- W2022237952 hasConcept C126255220 @default.
- W2022237952 hasConcept C159985019 @default.
- W2022237952 hasConcept C192562407 @default.
- W2022237952 hasConcept C199360897 @default.
- W2022237952 hasConcept C204323151 @default.
- W2022237952 hasConcept C2779843651 @default.
- W2022237952 hasConcept C33923547 @default.
- W2022237952 hasConcept C41008148 @default.
- W2022237952 hasConcept C69357855 @default.
- W2022237952 hasConcept C97355855 @default.
- W2022237952 hasConceptScore W2022237952C11413529 @default.
- W2022237952 hasConceptScore W2022237952C121332964 @default.
- W2022237952 hasConceptScore W2022237952C126255220 @default.
- W2022237952 hasConceptScore W2022237952C159985019 @default.
- W2022237952 hasConceptScore W2022237952C192562407 @default.
- W2022237952 hasConceptScore W2022237952C199360897 @default.
- W2022237952 hasConceptScore W2022237952C204323151 @default.
- W2022237952 hasConceptScore W2022237952C2779843651 @default.