Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022238738> ?p ?o ?g. }
- W2022238738 endingPage "287" @default.
- W2022238738 startingPage "279" @default.
- W2022238738 abstract "The influence of vanadium oxide loading in the supported VOx/Al2O3 catalyst system upon the dehydrated surface vanadia molecular structure, surface acidic properties, reduction characteristics and the catalytic oxidative dehydrogenation (ODH) of ethane to ethylene was investigated. Characterization of the supported VOx/Al2O3 catalysts by XPS surface analysis and Raman spectroscopy revealed that vanadia was highly dispersed on the Al2O3 support as a two-dimensional surface VOx overlayer with monolayer surface coverage corresponding to ∼9 V/nm2. Furthermore, Raman revealed that the extent of polymerization of surface VOx species increases with surface vanadia coverage in the sub-monolayer region. Pyridine chemisorption-IR studies revealed that the number of surface Brønsted acid sites increases with increasing surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The reducibility of the surface VOx species was monitored by both H2-TPR and in situ Raman spectroscopy and also revealed that the reducibility of the surface VOx species increases with surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The fraction of monomeric and polymeric surface VOx species has been quantitatively calculated by a novel UV–Vis DRS method. The overall ethane ODH TOF value, however, is constant with surface vanadia coverage in the sub-monolayer region. The constant ethane TOF reveals that both isolated and polymeric surface VOx species possess essentially the same TOF value for ethane activation. The reducibility and Brønsted acidity of the surface VOx species, however, do affect the ethylene selectivity. The highest selectivity to ethylene was obtained at a surface vanadia density of ∼2.2 V/nm2, which corresponds to a little more than ∼0.25 monolayer coverage. Below 2.2 V/nm2, exposed Al support cations are responsible for converting ethylene to CO. Above 2.2 V/nm2, the enhanced reducibility and surface Brønsted acidity appear to decrease the ethylene selectivity, which may also be due to higher conversion levels. Above monolayer coverage, crystalline V2O5 nanoparticles are also present and do not contribute to ethane activation, but are responsible for unselective conversion of ethylene to CO. The crystalline V2O5 nanoparticles also react with the Al2O3 support at elevated temperatures via a solid-state reaction to form crystalline AlVO4, which suppresses ethylene combustion of the crystalline V2O5 nanoparticles. The molecular structure–chemical characteristics of the surface VOx species demonstrate that neither the terminal VO nor bridging VOV bonds influence the chemical properties of the supported VOx/Al2O3 catalysts, and that the bridging VOAl bond represents the catalytic active site for ethane activation." @default.
- W2022238738 created "2016-06-24" @default.
- W2022238738 creator A5009782508 @default.
- W2022238738 creator A5034515120 @default.
- W2022238738 creator A5055639504 @default.
- W2022238738 creator A5066491588 @default.
- W2022238738 creator A5073974734 @default.
- W2022238738 creator A5085442682 @default.
- W2022238738 date "2006-12-15" @default.
- W2022238738 modified "2023-10-13" @default.
- W2022238738 title "Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity" @default.
- W2022238738 cites W1506813101 @default.
- W2022238738 cites W1964323690 @default.
- W2022238738 cites W1967604582 @default.
- W2022238738 cites W1969366986 @default.
- W2022238738 cites W1996774833 @default.
- W2022238738 cites W199969809 @default.
- W2022238738 cites W2001564947 @default.
- W2022238738 cites W2007122115 @default.
- W2022238738 cites W2031736283 @default.
- W2022238738 cites W2036109497 @default.
- W2022238738 cites W2051248161 @default.
- W2022238738 cites W2059511157 @default.
- W2022238738 cites W2076085552 @default.
- W2022238738 cites W2093067924 @default.
- W2022238738 cites W2106963377 @default.
- W2022238738 cites W2116001005 @default.
- W2022238738 cites W2522943200 @default.
- W2022238738 cites W3158897310 @default.
- W2022238738 doi "https://doi.org/10.1016/j.cattod.2006.07.034" @default.
- W2022238738 hasPublicationYear "2006" @default.
- W2022238738 type Work @default.
- W2022238738 sameAs 2022238738 @default.
- W2022238738 citedByCount "163" @default.
- W2022238738 countsByYear W20222387382012 @default.
- W2022238738 countsByYear W20222387382013 @default.
- W2022238738 countsByYear W20222387382014 @default.
- W2022238738 countsByYear W20222387382015 @default.
- W2022238738 countsByYear W20222387382016 @default.
- W2022238738 countsByYear W20222387382017 @default.
- W2022238738 countsByYear W20222387382018 @default.
- W2022238738 countsByYear W20222387382019 @default.
- W2022238738 countsByYear W20222387382020 @default.
- W2022238738 countsByYear W20222387382021 @default.
- W2022238738 countsByYear W20222387382022 @default.
- W2022238738 countsByYear W20222387382023 @default.
- W2022238738 crossrefType "journal-article" @default.
- W2022238738 hasAuthorship W2022238738A5009782508 @default.
- W2022238738 hasAuthorship W2022238738A5034515120 @default.
- W2022238738 hasAuthorship W2022238738A5055639504 @default.
- W2022238738 hasAuthorship W2022238738A5066491588 @default.
- W2022238738 hasAuthorship W2022238738A5073974734 @default.
- W2022238738 hasAuthorship W2022238738A5085442682 @default.
- W2022238738 hasConcept C118792377 @default.
- W2022238738 hasConcept C119889771 @default.
- W2022238738 hasConcept C120665830 @default.
- W2022238738 hasConcept C121332964 @default.
- W2022238738 hasConcept C127413603 @default.
- W2022238738 hasConcept C142724271 @default.
- W2022238738 hasConcept C161790260 @default.
- W2022238738 hasConcept C175708663 @default.
- W2022238738 hasConcept C178790620 @default.
- W2022238738 hasConcept C179104552 @default.
- W2022238738 hasConcept C185592680 @default.
- W2022238738 hasConcept C204787440 @default.
- W2022238738 hasConcept C2776820632 @default.
- W2022238738 hasConcept C2776910235 @default.
- W2022238738 hasConcept C2778597550 @default.
- W2022238738 hasConcept C33790079 @default.
- W2022238738 hasConcept C40003534 @default.
- W2022238738 hasConcept C42360764 @default.
- W2022238738 hasConcept C44228677 @default.
- W2022238738 hasConcept C504678139 @default.
- W2022238738 hasConcept C521977710 @default.
- W2022238738 hasConcept C55493867 @default.
- W2022238738 hasConcept C7070889 @default.
- W2022238738 hasConcept C71924100 @default.
- W2022238738 hasConcept C75473681 @default.
- W2022238738 hasConceptScore W2022238738C118792377 @default.
- W2022238738 hasConceptScore W2022238738C119889771 @default.
- W2022238738 hasConceptScore W2022238738C120665830 @default.
- W2022238738 hasConceptScore W2022238738C121332964 @default.
- W2022238738 hasConceptScore W2022238738C127413603 @default.
- W2022238738 hasConceptScore W2022238738C142724271 @default.
- W2022238738 hasConceptScore W2022238738C161790260 @default.
- W2022238738 hasConceptScore W2022238738C175708663 @default.
- W2022238738 hasConceptScore W2022238738C178790620 @default.
- W2022238738 hasConceptScore W2022238738C179104552 @default.
- W2022238738 hasConceptScore W2022238738C185592680 @default.
- W2022238738 hasConceptScore W2022238738C204787440 @default.
- W2022238738 hasConceptScore W2022238738C2776820632 @default.
- W2022238738 hasConceptScore W2022238738C2776910235 @default.
- W2022238738 hasConceptScore W2022238738C2778597550 @default.
- W2022238738 hasConceptScore W2022238738C33790079 @default.
- W2022238738 hasConceptScore W2022238738C40003534 @default.
- W2022238738 hasConceptScore W2022238738C42360764 @default.
- W2022238738 hasConceptScore W2022238738C44228677 @default.
- W2022238738 hasConceptScore W2022238738C504678139 @default.