Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022243308> ?p ?o ?g. }
- W2022243308 endingPage "140" @default.
- W2022243308 startingPage "127" @default.
- W2022243308 abstract "Abstract This study presents a novel procedure based on ensemble empirical mode decomposition (EEMD) and optimized support vector machine (SVM) for multi-fault diagnosis of rolling element bearings. The vibration signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by EEMD. Two types of features, the EEMD energy entropy and singular values of the matrix whose rows are IMFs, are extracted. EEMD energy entropy is used to specify whether the bearing has faults or not. If the bearing has faults, singular values are input to multi-class SVM optimized by inter-cluster distance in the feature space (ICDSVM) to specify the fault type. The proposed method was tested on a system with an electric motor which has two rolling bearings with 8 normal working conditions and 48 fault working conditions. Five groups of experiments were done to evaluate the effectiveness of the proposed method. The results show that the proposed method outperforms other methods both mentioned in this paper and published in other literatures." @default.
- W2022243308 created "2016-06-24" @default.
- W2022243308 creator A5006387641 @default.
- W2022243308 creator A5014135403 @default.
- W2022243308 date "2013-12-01" @default.
- W2022243308 modified "2023-10-01" @default.
- W2022243308 title "Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines" @default.
- W2022243308 cites W1971047516 @default.
- W2022243308 cites W1973389764 @default.
- W2022243308 cites W1975514583 @default.
- W2022243308 cites W1980793066 @default.
- W2022243308 cites W1987688897 @default.
- W2022243308 cites W1995352662 @default.
- W2022243308 cites W1997940686 @default.
- W2022243308 cites W2000080767 @default.
- W2022243308 cites W2000911430 @default.
- W2022243308 cites W2002616799 @default.
- W2022243308 cites W2007221293 @default.
- W2022243308 cites W2012120314 @default.
- W2022243308 cites W2014065015 @default.
- W2022243308 cites W2023961611 @default.
- W2022243308 cites W2029956212 @default.
- W2022243308 cites W2034646853 @default.
- W2022243308 cites W2040070030 @default.
- W2022243308 cites W2044605952 @default.
- W2022243308 cites W2048522269 @default.
- W2022243308 cites W2052675069 @default.
- W2022243308 cites W2056076127 @default.
- W2022243308 cites W2057094080 @default.
- W2022243308 cites W2063505130 @default.
- W2022243308 cites W2063789075 @default.
- W2022243308 cites W2066496894 @default.
- W2022243308 cites W2067145344 @default.
- W2022243308 cites W2072378835 @default.
- W2022243308 cites W2089938544 @default.
- W2022243308 cites W2093474419 @default.
- W2022243308 cites W2107074288 @default.
- W2022243308 cites W2120390927 @default.
- W2022243308 cites W2134502076 @default.
- W2022243308 cites W2153272791 @default.
- W2022243308 cites W2158001550 @default.
- W2022243308 cites W2171975443 @default.
- W2022243308 cites W4240658626 @default.
- W2022243308 doi "https://doi.org/10.1016/j.ymssp.2013.07.006" @default.
- W2022243308 hasPublicationYear "2013" @default.
- W2022243308 type Work @default.
- W2022243308 sameAs 2022243308 @default.
- W2022243308 citedByCount "236" @default.
- W2022243308 countsByYear W20222433082014 @default.
- W2022243308 countsByYear W20222433082015 @default.
- W2022243308 countsByYear W20222433082016 @default.
- W2022243308 countsByYear W20222433082017 @default.
- W2022243308 countsByYear W20222433082018 @default.
- W2022243308 countsByYear W20222433082019 @default.
- W2022243308 countsByYear W20222433082020 @default.
- W2022243308 countsByYear W20222433082021 @default.
- W2022243308 countsByYear W20222433082022 @default.
- W2022243308 countsByYear W20222433082023 @default.
- W2022243308 crossrefType "journal-article" @default.
- W2022243308 hasAuthorship W2022243308A5006387641 @default.
- W2022243308 hasAuthorship W2022243308A5014135403 @default.
- W2022243308 hasConcept C106131492 @default.
- W2022243308 hasConcept C111919701 @default.
- W2022243308 hasConcept C11413529 @default.
- W2022243308 hasConcept C119599485 @default.
- W2022243308 hasConcept C121332964 @default.
- W2022243308 hasConcept C12267149 @default.
- W2022243308 hasConcept C124681953 @default.
- W2022243308 hasConcept C127313418 @default.
- W2022243308 hasConcept C127413603 @default.
- W2022243308 hasConcept C153180895 @default.
- W2022243308 hasConcept C154945302 @default.
- W2022243308 hasConcept C165205528 @default.
- W2022243308 hasConcept C175551986 @default.
- W2022243308 hasConcept C17744445 @default.
- W2022243308 hasConcept C18903297 @default.
- W2022243308 hasConcept C198394728 @default.
- W2022243308 hasConcept C199539241 @default.
- W2022243308 hasConcept C200288055 @default.
- W2022243308 hasConcept C24890656 @default.
- W2022243308 hasConcept C25570617 @default.
- W2022243308 hasConcept C2775924081 @default.
- W2022243308 hasConcept C2780155820 @default.
- W2022243308 hasConcept C41008148 @default.
- W2022243308 hasConcept C47446073 @default.
- W2022243308 hasConcept C48677424 @default.
- W2022243308 hasConcept C66938386 @default.
- W2022243308 hasConcept C86803240 @default.
- W2022243308 hasConceptScore W2022243308C106131492 @default.
- W2022243308 hasConceptScore W2022243308C111919701 @default.
- W2022243308 hasConceptScore W2022243308C11413529 @default.
- W2022243308 hasConceptScore W2022243308C119599485 @default.
- W2022243308 hasConceptScore W2022243308C121332964 @default.
- W2022243308 hasConceptScore W2022243308C12267149 @default.
- W2022243308 hasConceptScore W2022243308C124681953 @default.
- W2022243308 hasConceptScore W2022243308C127313418 @default.
- W2022243308 hasConceptScore W2022243308C127413603 @default.
- W2022243308 hasConceptScore W2022243308C153180895 @default.