Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022248514> ?p ?o ?g. }
- W2022248514 endingPage "914" @default.
- W2022248514 startingPage "901" @default.
- W2022248514 abstract "A bounded vortex flow consists of an axisymmetric vortex that is confined top and bottom between two plates (the “confinement plate” and “impingement plate”, respectively) and surrounded laterally by a swirling annular slot jet. The bottom of the vortex terminates on the boundary layer along the impingement plate and the top of the vortex is drawn into a suction port positioned at the center of the confinement plate. The circumferential flow within the annular jet is important for supplying circulation to the central wall-normal vortex. This flow field is proposed as a method for mitigation of dust build-up on a surface, where the vortex–jet combination supplements the more traditional vacuum port by enhancing the surface shear stress and related particle transport rate. The paper reports on a computational study of the velocity field and particle transport by a bounded vortex flow. Fluid flow computations are performed using a finite-volume approach for an incompressible fluid and particle transport is simulated using a discrete-element method. Computations are performed for different values of two dimensionless parameters – the ratio of the plate separation distance and the average radial location of the jet inlet (the dimensionless confinement height) and the ratio of flow rate withdrawn at the suction outlet and that injected by the jet (the flow rate ratio). For small values of the flow rate ratio, the impinging jet streamlines pass down to the boundary layer along the bottom surface and then travel up the vortex core. By contrast, for large values of flow rate ratio, the annular jet is quickly entrained into the suction outlet and no wall-normal vortex is formed. Particles are observed to roll along the impingement surface in a direction determined by the fluid shear stress lines. Particles roll outward when they lie beyond a separatrix curve of the surface shear stress lines, where particles within this separatrix curve roll inward, piling up at the center of the flow field. A toroidal vortex ring forms for the small confinement height case with flow rate ratio equal to unity, which yields double separatrix curves in the shear stress lines. The inward rolling particles intermittently lift up due to collision forces and burst away from the impingement surface, eventually to become entrained into the flow out the suction port or resettling back onto the impingement surface." @default.
- W2022248514 created "2016-06-24" @default.
- W2022248514 creator A5011935050 @default.
- W2022248514 creator A5024889833 @default.
- W2022248514 date "2011-10-01" @default.
- W2022248514 modified "2023-09-24" @default.
- W2022248514 title "Particle removal from a surface by a bounded vortex flow" @default.
- W2022248514 cites W1971687463 @default.
- W2022248514 cites W1971960405 @default.
- W2022248514 cites W1972042542 @default.
- W2022248514 cites W1972262958 @default.
- W2022248514 cites W1980817406 @default.
- W2022248514 cites W1981981279 @default.
- W2022248514 cites W1984628949 @default.
- W2022248514 cites W1989529039 @default.
- W2022248514 cites W1991068722 @default.
- W2022248514 cites W1993970468 @default.
- W2022248514 cites W1996315796 @default.
- W2022248514 cites W1998462590 @default.
- W2022248514 cites W2000057356 @default.
- W2022248514 cites W2000108132 @default.
- W2022248514 cites W2000438762 @default.
- W2022248514 cites W2008864426 @default.
- W2022248514 cites W2012251304 @default.
- W2022248514 cites W2017779521 @default.
- W2022248514 cites W2017960289 @default.
- W2022248514 cites W2024765986 @default.
- W2022248514 cites W2027344868 @default.
- W2022248514 cites W2029731271 @default.
- W2022248514 cites W2029970120 @default.
- W2022248514 cites W2044560422 @default.
- W2022248514 cites W2051327944 @default.
- W2022248514 cites W2051931057 @default.
- W2022248514 cites W2052284121 @default.
- W2022248514 cites W2055892350 @default.
- W2022248514 cites W2057809854 @default.
- W2022248514 cites W2069627913 @default.
- W2022248514 cites W2071674544 @default.
- W2022248514 cites W2073775990 @default.
- W2022248514 cites W2073844793 @default.
- W2022248514 cites W2078337752 @default.
- W2022248514 cites W2080342536 @default.
- W2022248514 cites W2081666662 @default.
- W2022248514 cites W2082174694 @default.
- W2022248514 cites W2082638475 @default.
- W2022248514 cites W2085277640 @default.
- W2022248514 cites W2085564020 @default.
- W2022248514 cites W2085718858 @default.
- W2022248514 cites W2090543043 @default.
- W2022248514 cites W2090867659 @default.
- W2022248514 cites W2104338740 @default.
- W2022248514 cites W2106339559 @default.
- W2022248514 cites W2109217465 @default.
- W2022248514 cites W2116071705 @default.
- W2022248514 cites W2141333428 @default.
- W2022248514 cites W2159430491 @default.
- W2022248514 cites W2165484875 @default.
- W2022248514 cites W2168575889 @default.
- W2022248514 cites W2307550859 @default.
- W2022248514 cites W4231092276 @default.
- W2022248514 cites W4245131209 @default.
- W2022248514 doi "https://doi.org/10.1016/j.ijheatfluidflow.2011.07.003" @default.
- W2022248514 hasPublicationYear "2011" @default.
- W2022248514 type Work @default.
- W2022248514 sameAs 2022248514 @default.
- W2022248514 citedByCount "13" @default.
- W2022248514 countsByYear W20222485142013 @default.
- W2022248514 countsByYear W20222485142015 @default.
- W2022248514 countsByYear W20222485142016 @default.
- W2022248514 countsByYear W20222485142017 @default.
- W2022248514 countsByYear W20222485142018 @default.
- W2022248514 countsByYear W20222485142019 @default.
- W2022248514 countsByYear W20222485142022 @default.
- W2022248514 crossrefType "journal-article" @default.
- W2022248514 hasAuthorship W2022248514A5011935050 @default.
- W2022248514 hasAuthorship W2022248514A5024889833 @default.
- W2022248514 hasConcept C111603439 @default.
- W2022248514 hasConcept C119947313 @default.
- W2022248514 hasConcept C121332964 @default.
- W2022248514 hasConcept C140820882 @default.
- W2022248514 hasConcept C168475990 @default.
- W2022248514 hasConcept C192562407 @default.
- W2022248514 hasConcept C24872484 @default.
- W2022248514 hasConcept C57879066 @default.
- W2022248514 hasConcept C60439489 @default.
- W2022248514 hasConcept C74650414 @default.
- W2022248514 hasConceptScore W2022248514C111603439 @default.
- W2022248514 hasConceptScore W2022248514C119947313 @default.
- W2022248514 hasConceptScore W2022248514C121332964 @default.
- W2022248514 hasConceptScore W2022248514C140820882 @default.
- W2022248514 hasConceptScore W2022248514C168475990 @default.
- W2022248514 hasConceptScore W2022248514C192562407 @default.
- W2022248514 hasConceptScore W2022248514C24872484 @default.
- W2022248514 hasConceptScore W2022248514C57879066 @default.
- W2022248514 hasConceptScore W2022248514C60439489 @default.
- W2022248514 hasConceptScore W2022248514C74650414 @default.
- W2022248514 hasIssue "5" @default.
- W2022248514 hasLocation W20222485141 @default.