Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022251741> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2022251741 endingPage "422" @default.
- W2022251741 startingPage "405" @default.
- W2022251741 abstract "Next article Communication Channel Capacity with Almost Gaussian NoiseV. V. PrelovV. V. Prelovhttps://doi.org/10.1137/1133068PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423, 623–656 10,133e CrossrefGoogle Scholar[2] M. S. Pinsker, Masters Thesis, Fundamental Concepts in the Theory of Information Transmission, Diss. Doct. of Math.-Phys. Sciences, Inst. on Problems in Information Transmission, Moscow, 1963, (In Russian.) Google Scholar[3] B. S. Tsybakov, The capacity of a memoryless Gaussian vector channel, Problems Inform. Transmission, 1 (1965), Google Scholar[4] V. V. Prelov, Asymptotic behavior of the capacity of a continuous channel with large amount of noise, Problems Inform. Transmission, 6 (1970), 122–135 Google Scholar[5] R. G. Gallager, Information Theory and Reliable Communication, John Wiley, New York, 1968 Google Scholar[6] V. P. Leonov and , A. N. Shiryaev, On a method of calculating semi-invariants, Theory Probab. Appl., 4 (1959), 319–329 10.1137/1104031 LinkGoogle Scholar[7] V. V. Prelov, The asymptotic channel capacity of a continuous channel with small additive noise, Problems Inform. Transmission, 5 (1969), 23–27. Google Scholar[8] Thomas M. Cover, A. Viterbi, Some advances in broadcast channelsAdvances in communication systems, Vol. 4, Academic Press, New York, 1975, 229–260 58:15692 CrossrefGoogle Scholar[9] Aaron D. Wyner, Recent results in the Shannon theory, IEEE Trans. Information Theory, IT-20 (1974), 2–10 10.1109/TIT.1974.1055171 57:5430 0277.94009 CrossrefGoogle Scholar[10] T. Cover, Broadcast channels, IEEE Trans. Information Theory, IT-18 (1972), 2–14 10.1109/TIT.1972.1054727 52:12949 0228.94008 CrossrefGoogle Scholar[11] Patrick P. Bergmans, Random coding theorem for broadcast channels with degraded components, IEEE Trans. Information Theory, IT-19 (1973), 197–207 10.1109/TIT.1973.1054980 54:9846 CrossrefGoogle Scholar[12] Patrick P. Bergmans, A simple converse for broadcast channels with additive white Gaussian noise, IEEE Trans. Information Theory, IT-20 (1974), 279–280 10.1109/TIT.1974.1055184 50:16068 0305.94008 CrossrefGoogle Scholar[13] R. G. Gallager, Capacity and coding for certain broadcast channels, Problems. Inform. Transmission, 10 (1974), 184–193 Google Scholar[14] Thomas M. Cover and , Abbas A. El Gamal, Capacity theorems for the relay channel, IEEE Trans. Inform. Theory, 25 (1979), 572–584 10.1109/TIT.1979.1056084 81a:94030 0419.94004 CrossrefGoogle Scholar[15] Edward C. Van der Meulen, Three-terminal communication channels, Advances in Appl. Probability, 3 (1971), 120–154 47:10130 0232.94002 CrossrefGoogle Scholar[16] G. H. Hardy, , J. E. Littlewood and , G. Polya, Inequalities, Cambridge University Press, London, 1951 Google Scholar Next article FiguresRelatedReferencesCited byDetails Derivative of Mutual Information at Zero SNR: The Gaussian-Noise CaseIEEE Transactions on Information Theory, Vol. 57, No. 11 Cross Ref Information Theoretic Proofs of Entropy Power InequalitiesIEEE Transactions on Information Theory, Vol. 57, No. 1 Cross Ref Second-Order Asymptotics of Mutual InformationIEEE Transactions on Information Theory, Vol. 50, No. 8 Cross Ref Higher order asymptotics of mutual information for nonlinear channels with nongaussian noise Cross Ref Asymptotic Investigation of the Information Rates in Certain Stationary Channels with and without MemoryAmerican Journal of Mathematical and Management Sciences, Vol. 21, No. 1-2 Cross Ref Fifty years of Shannon theoryIEEE Transactions on Information Theory, Vol. 44, No. 6 Cross Ref Asymptotic Expansion For The Capacity Region Of The Multiple-access Channel With Common Information And Almost Gaussian Noise Cross Ref An Asymptotic Expression For The Capacity Region Of The Two-way Communication Channel With Additive Almost Gaussian Noise Cross Ref Volume 33, Issue 3| 1989Theory of Probability & Its Applications History Submitted:03 November 1986Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1133068Article page range:pp. 405-422ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics" @default.
- W2022251741 created "2016-06-24" @default.
- W2022251741 creator A5035176901 @default.
- W2022251741 date "1989-01-01" @default.
- W2022251741 modified "2023-09-24" @default.
- W2022251741 title "Communication Channel Capacity with Almost Gaussian Noise" @default.
- W2022251741 cites W1971536606 @default.
- W2022251741 cites W2094458162 @default.
- W2022251741 doi "https://doi.org/10.1137/1133068" @default.
- W2022251741 hasPublicationYear "1989" @default.
- W2022251741 type Work @default.
- W2022251741 sameAs 2022251741 @default.
- W2022251741 citedByCount "9" @default.
- W2022251741 crossrefType "journal-article" @default.
- W2022251741 hasAuthorship W2022251741A5035176901 @default.
- W2022251741 hasConcept C105795698 @default.
- W2022251741 hasConcept C11413529 @default.
- W2022251741 hasConcept C115961682 @default.
- W2022251741 hasConcept C118615104 @default.
- W2022251741 hasConcept C121332964 @default.
- W2022251741 hasConcept C127162648 @default.
- W2022251741 hasConcept C127413603 @default.
- W2022251741 hasConcept C154945302 @default.
- W2022251741 hasConcept C163716315 @default.
- W2022251741 hasConcept C2780428219 @default.
- W2022251741 hasConcept C2983568541 @default.
- W2022251741 hasConcept C2983848023 @default.
- W2022251741 hasConcept C31258907 @default.
- W2022251741 hasConcept C33923547 @default.
- W2022251741 hasConcept C3716254 @default.
- W2022251741 hasConcept C41008148 @default.
- W2022251741 hasConcept C4199805 @default.
- W2022251741 hasConcept C52622258 @default.
- W2022251741 hasConcept C62520636 @default.
- W2022251741 hasConcept C761482 @default.
- W2022251741 hasConcept C76155785 @default.
- W2022251741 hasConcept C78519656 @default.
- W2022251741 hasConcept C97744766 @default.
- W2022251741 hasConcept C99498987 @default.
- W2022251741 hasConceptScore W2022251741C105795698 @default.
- W2022251741 hasConceptScore W2022251741C11413529 @default.
- W2022251741 hasConceptScore W2022251741C115961682 @default.
- W2022251741 hasConceptScore W2022251741C118615104 @default.
- W2022251741 hasConceptScore W2022251741C121332964 @default.
- W2022251741 hasConceptScore W2022251741C127162648 @default.
- W2022251741 hasConceptScore W2022251741C127413603 @default.
- W2022251741 hasConceptScore W2022251741C154945302 @default.
- W2022251741 hasConceptScore W2022251741C163716315 @default.
- W2022251741 hasConceptScore W2022251741C2780428219 @default.
- W2022251741 hasConceptScore W2022251741C2983568541 @default.
- W2022251741 hasConceptScore W2022251741C2983848023 @default.
- W2022251741 hasConceptScore W2022251741C31258907 @default.
- W2022251741 hasConceptScore W2022251741C33923547 @default.
- W2022251741 hasConceptScore W2022251741C3716254 @default.
- W2022251741 hasConceptScore W2022251741C41008148 @default.
- W2022251741 hasConceptScore W2022251741C4199805 @default.
- W2022251741 hasConceptScore W2022251741C52622258 @default.
- W2022251741 hasConceptScore W2022251741C62520636 @default.
- W2022251741 hasConceptScore W2022251741C761482 @default.
- W2022251741 hasConceptScore W2022251741C76155785 @default.
- W2022251741 hasConceptScore W2022251741C78519656 @default.
- W2022251741 hasConceptScore W2022251741C97744766 @default.
- W2022251741 hasConceptScore W2022251741C99498987 @default.
- W2022251741 hasIssue "3" @default.
- W2022251741 hasLocation W20222517411 @default.
- W2022251741 hasOpenAccess W2022251741 @default.
- W2022251741 hasPrimaryLocation W20222517411 @default.
- W2022251741 hasRelatedWork W1506449280 @default.
- W2022251741 hasRelatedWork W1579064306 @default.
- W2022251741 hasRelatedWork W1624608204 @default.
- W2022251741 hasRelatedWork W1963570780 @default.
- W2022251741 hasRelatedWork W2000322702 @default.
- W2022251741 hasRelatedWork W2006446426 @default.
- W2022251741 hasRelatedWork W2022426124 @default.
- W2022251741 hasRelatedWork W2106099346 @default.
- W2022251741 hasRelatedWork W2112508992 @default.
- W2022251741 hasRelatedWork W318655662 @default.
- W2022251741 hasVolume "33" @default.
- W2022251741 isParatext "false" @default.
- W2022251741 isRetracted "false" @default.
- W2022251741 magId "2022251741" @default.
- W2022251741 workType "article" @default.