Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022259050> ?p ?o ?g. }
- W2022259050 endingPage "1233.e5" @default.
- W2022259050 startingPage "1227" @default.
- W2022259050 abstract "ObjectiveAlthough deep hypothermic circulatory arrest has been known to induce neuronal injury, the molecular mechanism of this damage has not been identified. We studied the key molecular mediators through cellular energy failure, excitotoxicity, and overactivation of poly(adenosine diphosphate–ribose) polymerase 1 in brain tissues of a rabbit model of deep hypothermic circulatory arrest similar to clinical settings.MethodsWe established 2 models of cardiopulmonary bypass (n = 15) and deep hypothermic circulatory arrest (n = 15) associated with cerebral microdialysis in rabbits. Deep hypothermic circulatory arrest lasted for 60 minutes. The measurements of glucose, lactate, pyruvate, and glutamate collected by means of microdialysis were quantified by using a microdialysis analyzer and high-performance liquid chromatography. The overactivation of poly(adenosine diphosphate–ribose) polymerase 1 was assessed by detecting immunostaining of poly(adenosine diphosphate–ribose). Histologic studies were used to identify neuronal morphologic changes and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick end-labeling staining and poly(adenosine diphosphate–ribose) polymerase 1 Western blotting were used to identify apoptotic cells and early apoptotic signals.ResultsDeep hypothermic circulatory arrest significantly increased the lactate/pyruvate and lactate/glucose ratios and the glutamate value, whereas cardiopulmonary bypass did not (P < .05). Deep hypothermic circulatory arrest significantly increased the numbers of poly(adenosine diphosphate–ribose)–positive and apoptotic neurons compared with cardiopulmonary bypass (P < .05). The cleavage of poly(adenosine diphosphate–ribose) polymerase 1 was only found in the deep hypothermic circulatory arrest group. More injured neurons were found in the deep hypothermic circulatory arrest group (histologic scores, P < .05).ConclusionsThis study demonstrated that deep hypothermic circulatory arrest results in an overactivation of poly(adenosine diphosphate–ribose) polymerase 1, and that there were molecular events consisting of cellular energy failure, excitotoxicity, overactivation of poly(adenosine diphosphate–ribose) polymerase 1, and necrosis and/or apoptosis in neuronal injury. Although deep hypothermic circulatory arrest has been known to induce neuronal injury, the molecular mechanism of this damage has not been identified. We studied the key molecular mediators through cellular energy failure, excitotoxicity, and overactivation of poly(adenosine diphosphate–ribose) polymerase 1 in brain tissues of a rabbit model of deep hypothermic circulatory arrest similar to clinical settings. We established 2 models of cardiopulmonary bypass (n = 15) and deep hypothermic circulatory arrest (n = 15) associated with cerebral microdialysis in rabbits. Deep hypothermic circulatory arrest lasted for 60 minutes. The measurements of glucose, lactate, pyruvate, and glutamate collected by means of microdialysis were quantified by using a microdialysis analyzer and high-performance liquid chromatography. The overactivation of poly(adenosine diphosphate–ribose) polymerase 1 was assessed by detecting immunostaining of poly(adenosine diphosphate–ribose). Histologic studies were used to identify neuronal morphologic changes and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick end-labeling staining and poly(adenosine diphosphate–ribose) polymerase 1 Western blotting were used to identify apoptotic cells and early apoptotic signals. Deep hypothermic circulatory arrest significantly increased the lactate/pyruvate and lactate/glucose ratios and the glutamate value, whereas cardiopulmonary bypass did not (P < .05). Deep hypothermic circulatory arrest significantly increased the numbers of poly(adenosine diphosphate–ribose)–positive and apoptotic neurons compared with cardiopulmonary bypass (P < .05). The cleavage of poly(adenosine diphosphate–ribose) polymerase 1 was only found in the deep hypothermic circulatory arrest group. More injured neurons were found in the deep hypothermic circulatory arrest group (histologic scores, P < .05). This study demonstrated that deep hypothermic circulatory arrest results in an overactivation of poly(adenosine diphosphate–ribose) polymerase 1, and that there were molecular events consisting of cellular energy failure, excitotoxicity, overactivation of poly(adenosine diphosphate–ribose) polymerase 1, and necrosis and/or apoptosis in neuronal injury." @default.
- W2022259050 created "2016-06-24" @default.
- W2022259050 creator A5015732550 @default.
- W2022259050 creator A5016217707 @default.
- W2022259050 creator A5028470655 @default.
- W2022259050 creator A5033491493 @default.
- W2022259050 creator A5045784751 @default.
- W2022259050 creator A5046472554 @default.
- W2022259050 creator A5048718607 @default.
- W2022259050 creator A5070152563 @default.
- W2022259050 creator A5076371926 @default.
- W2022259050 date "2007-11-01" @default.
- W2022259050 modified "2023-10-16" @default.
- W2022259050 title "Overactivation of poly(adenosine phosphate–ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: Study in a rabbit model" @default.
- W2022259050 cites W1543554996 @default.
- W2022259050 cites W1973198505 @default.
- W2022259050 cites W1975740943 @default.
- W2022259050 cites W1975837286 @default.
- W2022259050 cites W1977351260 @default.
- W2022259050 cites W1984616391 @default.
- W2022259050 cites W1985740124 @default.
- W2022259050 cites W1986306295 @default.
- W2022259050 cites W1996089864 @default.
- W2022259050 cites W2007355475 @default.
- W2022259050 cites W2007876731 @default.
- W2022259050 cites W2011258149 @default.
- W2022259050 cites W2012461144 @default.
- W2022259050 cites W2014150894 @default.
- W2022259050 cites W2028501253 @default.
- W2022259050 cites W2028869950 @default.
- W2022259050 cites W2050722240 @default.
- W2022259050 cites W2054004164 @default.
- W2022259050 cites W2060278375 @default.
- W2022259050 cites W2062422180 @default.
- W2022259050 cites W2082675155 @default.
- W2022259050 cites W2084060660 @default.
- W2022259050 cites W2085459880 @default.
- W2022259050 cites W2094991297 @default.
- W2022259050 cites W2152064989 @default.
- W2022259050 cites W2162385486 @default.
- W2022259050 cites W2165010546 @default.
- W2022259050 cites W2174668858 @default.
- W2022259050 cites W2316145923 @default.
- W2022259050 cites W2324991405 @default.
- W2022259050 doi "https://doi.org/10.1016/j.jtcvs.2007.05.062" @default.
- W2022259050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17976454" @default.
- W2022259050 hasPublicationYear "2007" @default.
- W2022259050 type Work @default.
- W2022259050 sameAs 2022259050 @default.
- W2022259050 citedByCount "4" @default.
- W2022259050 countsByYear W20222590502014 @default.
- W2022259050 countsByYear W20222590502015 @default.
- W2022259050 countsByYear W20222590502016 @default.
- W2022259050 countsByYear W20222590502017 @default.
- W2022259050 crossrefType "journal-article" @default.
- W2022259050 hasAuthorship W2022259050A5015732550 @default.
- W2022259050 hasAuthorship W2022259050A5016217707 @default.
- W2022259050 hasAuthorship W2022259050A5028470655 @default.
- W2022259050 hasAuthorship W2022259050A5033491493 @default.
- W2022259050 hasAuthorship W2022259050A5045784751 @default.
- W2022259050 hasAuthorship W2022259050A5046472554 @default.
- W2022259050 hasAuthorship W2022259050A5048718607 @default.
- W2022259050 hasAuthorship W2022259050A5070152563 @default.
- W2022259050 hasAuthorship W2022259050A5076371926 @default.
- W2022259050 hasBestOaLocation W20222590501 @default.
- W2022259050 hasConcept C126322002 @default.
- W2022259050 hasConcept C154281038 @default.
- W2022259050 hasConcept C157767197 @default.
- W2022259050 hasConcept C170493617 @default.
- W2022259050 hasConcept C181199279 @default.
- W2022259050 hasConcept C182979987 @default.
- W2022259050 hasConcept C2776991684 @default.
- W2022259050 hasConcept C2777399203 @default.
- W2022259050 hasConcept C2780631194 @default.
- W2022259050 hasConcept C2993802102 @default.
- W2022259050 hasConcept C42219234 @default.
- W2022259050 hasConcept C50156730 @default.
- W2022259050 hasConcept C529278444 @default.
- W2022259050 hasConcept C55493867 @default.
- W2022259050 hasConcept C61174792 @default.
- W2022259050 hasConcept C71924100 @default.
- W2022259050 hasConcept C72859922 @default.
- W2022259050 hasConcept C82381507 @default.
- W2022259050 hasConcept C86803240 @default.
- W2022259050 hasConcept C89560881 @default.
- W2022259050 hasConceptScore W2022259050C126322002 @default.
- W2022259050 hasConceptScore W2022259050C154281038 @default.
- W2022259050 hasConceptScore W2022259050C157767197 @default.
- W2022259050 hasConceptScore W2022259050C170493617 @default.
- W2022259050 hasConceptScore W2022259050C181199279 @default.
- W2022259050 hasConceptScore W2022259050C182979987 @default.
- W2022259050 hasConceptScore W2022259050C2776991684 @default.
- W2022259050 hasConceptScore W2022259050C2777399203 @default.
- W2022259050 hasConceptScore W2022259050C2780631194 @default.
- W2022259050 hasConceptScore W2022259050C2993802102 @default.
- W2022259050 hasConceptScore W2022259050C42219234 @default.
- W2022259050 hasConceptScore W2022259050C50156730 @default.
- W2022259050 hasConceptScore W2022259050C529278444 @default.