Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022261599> ?p ?o ?g. }
- W2022261599 endingPage "400" @default.
- W2022261599 startingPage "388" @default.
- W2022261599 abstract "Abstract Diamond‐like carbon (DLC) films are favored for wear components because of diamond‐like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat‐wiss u Werkstofftech 2004;35:924–928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410–413; Tiainen, Diam Relat Mater 2001;10:153–160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319–328; Uzumaki et al., Diam Relat Mater 2006;15:982–988; Hauert, Diam Relat Mater 2003;12:583–589; Grill, Diam Relat Mater 2003;12:166–170). In this study, hydrogen‐free amorphous, tetrahedrally bonded DLC films (ta‐C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209–214). The mechanical performance of the ta‐C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta‐C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2–10 μm thick ta‐C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L C2 during scratch testing. The ta‐C coating reduced the wear from 3.5 × 10 −5 mm 3 /Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10 −7 mm 3 /Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin‐on‐disk testing. The lowest wear factor of 3.9 × 10 −10 mm 3 /Nm was measured using a ta‐C coated steel ball running against a ta‐C coated and polished Co28Cr6Mo disk. Student's t ‐test found that the ta‐C coating had no statistically significant ( p < 0.05) effect on OB attachment, when compared with the uncoated control samples. There was no significant difference ( p < 0.05) in the Live/Dead assay results in cell death between the ta‐C coated Co28Cr6Mo and Ti6Al4V samples and the uncoated controls. Therefore, these ta‐C coatings show improved wear and corrosion (Dorner‐Reisel et al., Diam Relat Mater 2003;11:823–827; Affato et al., J Biomed Mater Res B Appl Biomater 2000;53:221–226; Dorner‐Reisel et al., Surf Coat Tech 2004;177–178:830–837; Kim et al., Diam Relat Mater 2004;14:35–41) performance and excellent in vitro cyto‐compatibility, when compared with currently used uncoated Co28Cr6Mo and Ti6Al4V implant materials. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010." @default.
- W2022261599 created "2016-06-24" @default.
- W2022261599 creator A5021318198 @default.
- W2022261599 creator A5046379271 @default.
- W2022261599 creator A5046956822 @default.
- W2022261599 creator A5059242513 @default.
- W2022261599 creator A5069167689 @default.
- W2022261599 creator A5076861565 @default.
- W2022261599 creator A5083291149 @default.
- W2022261599 creator A5083502179 @default.
- W2022261599 date "2010-07-20" @default.
- W2022261599 modified "2023-10-18" @default.
- W2022261599 title "Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys" @default.
- W2022261599 cites W1897432177 @default.
- W2022261599 cites W1970937031 @default.
- W2022261599 cites W1973578440 @default.
- W2022261599 cites W1973981653 @default.
- W2022261599 cites W1979568104 @default.
- W2022261599 cites W1983174713 @default.
- W2022261599 cites W1983860959 @default.
- W2022261599 cites W1986258282 @default.
- W2022261599 cites W1996420099 @default.
- W2022261599 cites W1996686604 @default.
- W2022261599 cites W2000996153 @default.
- W2022261599 cites W2002678826 @default.
- W2022261599 cites W2003852585 @default.
- W2022261599 cites W2011069022 @default.
- W2022261599 cites W2012346785 @default.
- W2022261599 cites W2016738556 @default.
- W2022261599 cites W2020451844 @default.
- W2022261599 cites W2020474903 @default.
- W2022261599 cites W2022061862 @default.
- W2022261599 cites W2029872799 @default.
- W2022261599 cites W2030497560 @default.
- W2022261599 cites W2036885245 @default.
- W2022261599 cites W2043975509 @default.
- W2022261599 cites W2044472911 @default.
- W2022261599 cites W2044795690 @default.
- W2022261599 cites W2046692282 @default.
- W2022261599 cites W2050563255 @default.
- W2022261599 cites W2053963019 @default.
- W2022261599 cites W2061733154 @default.
- W2022261599 cites W2071203202 @default.
- W2022261599 cites W2073228081 @default.
- W2022261599 cites W2073393529 @default.
- W2022261599 cites W2087320214 @default.
- W2022261599 cites W2089725503 @default.
- W2022261599 cites W2090076876 @default.
- W2022261599 cites W2093841011 @default.
- W2022261599 cites W2116001869 @default.
- W2022261599 cites W2131761812 @default.
- W2022261599 cites W2142702626 @default.
- W2022261599 cites W2163092949 @default.
- W2022261599 cites W2170691404 @default.
- W2022261599 cites W2323591115 @default.
- W2022261599 cites W277622595 @default.
- W2022261599 cites W2983014650 @default.
- W2022261599 doi "https://doi.org/10.1002/jbm.a.32851" @default.
- W2022261599 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20648536" @default.
- W2022261599 hasPublicationYear "2010" @default.
- W2022261599 type Work @default.
- W2022261599 sameAs 2022261599 @default.
- W2022261599 citedByCount "42" @default.
- W2022261599 countsByYear W20222615992012 @default.
- W2022261599 countsByYear W20222615992013 @default.
- W2022261599 countsByYear W20222615992014 @default.
- W2022261599 countsByYear W20222615992015 @default.
- W2022261599 countsByYear W20222615992016 @default.
- W2022261599 countsByYear W20222615992017 @default.
- W2022261599 countsByYear W20222615992018 @default.
- W2022261599 countsByYear W20222615992019 @default.
- W2022261599 countsByYear W20222615992020 @default.
- W2022261599 countsByYear W20222615992021 @default.
- W2022261599 countsByYear W20222615992022 @default.
- W2022261599 countsByYear W20222615992023 @default.
- W2022261599 crossrefType "journal-article" @default.
- W2022261599 hasAuthorship W2022261599A5021318198 @default.
- W2022261599 hasAuthorship W2022261599A5046379271 @default.
- W2022261599 hasAuthorship W2022261599A5046956822 @default.
- W2022261599 hasAuthorship W2022261599A5059242513 @default.
- W2022261599 hasAuthorship W2022261599A5069167689 @default.
- W2022261599 hasAuthorship W2022261599A5076861565 @default.
- W2022261599 hasAuthorship W2022261599A5083291149 @default.
- W2022261599 hasAuthorship W2022261599A5083502179 @default.
- W2022261599 hasConcept C134514944 @default.
- W2022261599 hasConcept C159985019 @default.
- W2022261599 hasConcept C191897082 @default.
- W2022261599 hasConcept C192562407 @default.
- W2022261599 hasConcept C2777230088 @default.
- W2022261599 hasConcept C2780026712 @default.
- W2022261599 hasConcept C504678139 @default.
- W2022261599 hasConcept C506065880 @default.
- W2022261599 hasConcept C549387045 @default.
- W2022261599 hasConcept C6556556 @default.
- W2022261599 hasConcept C8953137 @default.
- W2022261599 hasConceptScore W2022261599C134514944 @default.
- W2022261599 hasConceptScore W2022261599C159985019 @default.
- W2022261599 hasConceptScore W2022261599C191897082 @default.