Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022270072> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2022270072 endingPage "408" @default.
- W2022270072 startingPage "354" @default.
- W2022270072 abstract "In this paper we identify some of the most significant references on the inverse problem of the calculus of variations for single integrals and initiate the study of the generalization of the underlying methodology to classical field theories. We first classify Lorentz-covariant tensorial field equations into nonlinear, quasi-linear, and semilinear forms, and then introduce their systems of equations of variation and adjoint systems. The necessary and sufficient conditions for the self-adjointness of class C2, regular, tensorial, nonlinear, quasi-linear and semilinear forms are worked out. We study the Lagrange equations, their system of equations of variations (Jacobi equations) and their adjoint system by proving that, for class C4 and regular Lagrangian densities, they are always self-adjoint. We then introduce a concept of analytic representation which occurs when the Lagrange equations coincide with the field equations up to equivalence transformations and refine the definition by particularizing it as direct or indirect and ordered or nonordered. Some of the conventional cases of tensorial fields are considered and we prove, in particular, that the conventional representation of the complex scalar field in interaction with the electromagnetic field is of the ordered indirect type. For the objective of identifying our program we recall the two classes of equivalence transformations of the Lagrangian densities which are primarily used nowadays, namely, the Lorentz (coordinate) transformations and the gauge transformations (transformations of fields within a fixed coordinate system), and postulate the existence of a third class, which we term isotopic transformations of the Lagrangian density and which consist of equivalence transformations within a fixed coordinate system and gauge. We finally outline the objectives of our program, which essentially consist of the identification of the necessary and sufficient conditions for the existence of a Lagrangian in field theories and their first application to the transformation theory within the framework of our variational approach to self-adjointness." @default.
- W2022270072 created "2016-06-24" @default.
- W2022270072 creator A5056528460 @default.
- W2022270072 date "1977-02-01" @default.
- W2022270072 modified "2023-10-18" @default.
- W2022270072 title "Necessary and sufficient conditions for the existence of a Lagrangian in field theory. I. Variational approach to self-adjointness for tensorial field equations" @default.
- W2022270072 cites W1508310023 @default.
- W2022270072 cites W1548189833 @default.
- W2022270072 cites W2007827550 @default.
- W2022270072 cites W2040870749 @default.
- W2022270072 cites W2047413599 @default.
- W2022270072 cites W2057952563 @default.
- W2022270072 cites W2069046189 @default.
- W2022270072 cites W2116601649 @default.
- W2022270072 cites W2315194888 @default.
- W2022270072 cites W4214665684 @default.
- W2022270072 doi "https://doi.org/10.1016/s0003-4916(97)90004-x" @default.
- W2022270072 hasPublicationYear "1977" @default.
- W2022270072 type Work @default.
- W2022270072 sameAs 2022270072 @default.
- W2022270072 citedByCount "46" @default.
- W2022270072 crossrefType "journal-article" @default.
- W2022270072 hasAuthorship W2022270072A5056528460 @default.
- W2022270072 hasConcept C110521144 @default.
- W2022270072 hasConcept C121332964 @default.
- W2022270072 hasConcept C134306372 @default.
- W2022270072 hasConcept C158622935 @default.
- W2022270072 hasConcept C202444582 @default.
- W2022270072 hasConcept C2524010 @default.
- W2022270072 hasConcept C28826006 @default.
- W2022270072 hasConcept C33923547 @default.
- W2022270072 hasConcept C37914503 @default.
- W2022270072 hasConcept C5667645 @default.
- W2022270072 hasConcept C57691317 @default.
- W2022270072 hasConcept C62520636 @default.
- W2022270072 hasConcept C74650414 @default.
- W2022270072 hasConcept C9136319 @default.
- W2022270072 hasConcept C9652623 @default.
- W2022270072 hasConceptScore W2022270072C110521144 @default.
- W2022270072 hasConceptScore W2022270072C121332964 @default.
- W2022270072 hasConceptScore W2022270072C134306372 @default.
- W2022270072 hasConceptScore W2022270072C158622935 @default.
- W2022270072 hasConceptScore W2022270072C202444582 @default.
- W2022270072 hasConceptScore W2022270072C2524010 @default.
- W2022270072 hasConceptScore W2022270072C28826006 @default.
- W2022270072 hasConceptScore W2022270072C33923547 @default.
- W2022270072 hasConceptScore W2022270072C37914503 @default.
- W2022270072 hasConceptScore W2022270072C5667645 @default.
- W2022270072 hasConceptScore W2022270072C57691317 @default.
- W2022270072 hasConceptScore W2022270072C62520636 @default.
- W2022270072 hasConceptScore W2022270072C74650414 @default.
- W2022270072 hasConceptScore W2022270072C9136319 @default.
- W2022270072 hasConceptScore W2022270072C9652623 @default.
- W2022270072 hasIssue "2" @default.
- W2022270072 hasLocation W20222700721 @default.
- W2022270072 hasOpenAccess W2022270072 @default.
- W2022270072 hasPrimaryLocation W20222700721 @default.
- W2022270072 hasRelatedWork W1964412314 @default.
- W2022270072 hasRelatedWork W1979074380 @default.
- W2022270072 hasRelatedWork W1994934389 @default.
- W2022270072 hasRelatedWork W1999204402 @default.
- W2022270072 hasRelatedWork W2028127566 @default.
- W2022270072 hasRelatedWork W2091945801 @default.
- W2022270072 hasRelatedWork W2767950683 @default.
- W2022270072 hasRelatedWork W3102016575 @default.
- W2022270072 hasRelatedWork W3196382132 @default.
- W2022270072 hasRelatedWork W182061471 @default.
- W2022270072 hasVolume "103" @default.
- W2022270072 isParatext "false" @default.
- W2022270072 isRetracted "false" @default.
- W2022270072 magId "2022270072" @default.
- W2022270072 workType "article" @default.