Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022270721> ?p ?o ?g. }
- W2022270721 endingPage "1446" @default.
- W2022270721 startingPage "1439" @default.
- W2022270721 abstract "This paper presents a new image denoising algorithm based on the modeling of contourlet coefficients in each subband with a normal inverse Gaussian (NIG) probability density function (PDF). This PDF is able to model the heavy-tailed nature of contourlet coefficients and the local parameters model the intrascale dependency between the coefficients. Within this framework, we describe a novel method for image denoising based on designing maximum a posteriori (MAP). Furthermore, the cycle spinning algorithm is employed to modify the Gibbs phenomenon around edges caused by the lack of translation invariance of the contourlet transform. Experimental results prove that the new method can remove Gaussian white noise effectively, reserve image edges better and enhance the peak signal-to-noise ratio." @default.
- W2022270721 created "2016-06-24" @default.
- W2022270721 creator A5055200687 @default.
- W2022270721 creator A5089374800 @default.
- W2022270721 date "2010-09-01" @default.
- W2022270721 modified "2023-10-17" @default.
- W2022270721 title "Image denoising in contourlet domain based on a normal inverse Gaussian prior" @default.
- W2022270721 cites W2018332268 @default.
- W2022270721 cites W2048169076 @default.
- W2022270721 cites W2065391104 @default.
- W2022270721 cites W2098821691 @default.
- W2022270721 cites W2103504761 @default.
- W2022270721 cites W2112545418 @default.
- W2022270721 cites W2117853853 @default.
- W2022270721 cites W2128989367 @default.
- W2022270721 cites W2132680427 @default.
- W2022270721 cites W2132984323 @default.
- W2022270721 cites W2137733585 @default.
- W2022270721 cites W2143421693 @default.
- W2022270721 cites W2146842127 @default.
- W2022270721 cites W2158261114 @default.
- W2022270721 cites W2158576618 @default.
- W2022270721 cites W2158940042 @default.
- W2022270721 cites W4240889859 @default.
- W2022270721 cites W4255521522 @default.
- W2022270721 doi "https://doi.org/10.1016/j.dsp.2010.01.006" @default.
- W2022270721 hasPublicationYear "2010" @default.
- W2022270721 type Work @default.
- W2022270721 sameAs 2022270721 @default.
- W2022270721 citedByCount "25" @default.
- W2022270721 countsByYear W20222707212012 @default.
- W2022270721 countsByYear W20222707212013 @default.
- W2022270721 countsByYear W20222707212014 @default.
- W2022270721 countsByYear W20222707212015 @default.
- W2022270721 countsByYear W20222707212016 @default.
- W2022270721 countsByYear W20222707212017 @default.
- W2022270721 countsByYear W20222707212018 @default.
- W2022270721 countsByYear W20222707212019 @default.
- W2022270721 countsByYear W20222707212020 @default.
- W2022270721 countsByYear W20222707212022 @default.
- W2022270721 countsByYear W20222707212023 @default.
- W2022270721 crossrefType "journal-article" @default.
- W2022270721 hasAuthorship W2022270721A5055200687 @default.
- W2022270721 hasAuthorship W2022270721A5089374800 @default.
- W2022270721 hasConcept C104317684 @default.
- W2022270721 hasConcept C105580179 @default.
- W2022270721 hasConcept C105795698 @default.
- W2022270721 hasConcept C112633086 @default.
- W2022270721 hasConcept C11413529 @default.
- W2022270721 hasConcept C115961682 @default.
- W2022270721 hasConcept C121332964 @default.
- W2022270721 hasConcept C149364088 @default.
- W2022270721 hasConcept C153180895 @default.
- W2022270721 hasConcept C154945302 @default.
- W2022270721 hasConcept C163294075 @default.
- W2022270721 hasConcept C163716315 @default.
- W2022270721 hasConcept C169334058 @default.
- W2022270721 hasConcept C185592680 @default.
- W2022270721 hasConcept C196216189 @default.
- W2022270721 hasConcept C197055811 @default.
- W2022270721 hasConcept C20479862 @default.
- W2022270721 hasConcept C207467116 @default.
- W2022270721 hasConcept C2524010 @default.
- W2022270721 hasConcept C33923547 @default.
- W2022270721 hasConcept C41008148 @default.
- W2022270721 hasConcept C47432892 @default.
- W2022270721 hasConcept C49781872 @default.
- W2022270721 hasConcept C55493867 @default.
- W2022270721 hasConcept C62520636 @default.
- W2022270721 hasConcept C9810830 @default.
- W2022270721 hasConcept C99498987 @default.
- W2022270721 hasConceptScore W2022270721C104317684 @default.
- W2022270721 hasConceptScore W2022270721C105580179 @default.
- W2022270721 hasConceptScore W2022270721C105795698 @default.
- W2022270721 hasConceptScore W2022270721C112633086 @default.
- W2022270721 hasConceptScore W2022270721C11413529 @default.
- W2022270721 hasConceptScore W2022270721C115961682 @default.
- W2022270721 hasConceptScore W2022270721C121332964 @default.
- W2022270721 hasConceptScore W2022270721C149364088 @default.
- W2022270721 hasConceptScore W2022270721C153180895 @default.
- W2022270721 hasConceptScore W2022270721C154945302 @default.
- W2022270721 hasConceptScore W2022270721C163294075 @default.
- W2022270721 hasConceptScore W2022270721C163716315 @default.
- W2022270721 hasConceptScore W2022270721C169334058 @default.
- W2022270721 hasConceptScore W2022270721C185592680 @default.
- W2022270721 hasConceptScore W2022270721C196216189 @default.
- W2022270721 hasConceptScore W2022270721C197055811 @default.
- W2022270721 hasConceptScore W2022270721C20479862 @default.
- W2022270721 hasConceptScore W2022270721C207467116 @default.
- W2022270721 hasConceptScore W2022270721C2524010 @default.
- W2022270721 hasConceptScore W2022270721C33923547 @default.
- W2022270721 hasConceptScore W2022270721C41008148 @default.
- W2022270721 hasConceptScore W2022270721C47432892 @default.
- W2022270721 hasConceptScore W2022270721C49781872 @default.
- W2022270721 hasConceptScore W2022270721C55493867 @default.
- W2022270721 hasConceptScore W2022270721C62520636 @default.
- W2022270721 hasConceptScore W2022270721C9810830 @default.
- W2022270721 hasConceptScore W2022270721C99498987 @default.