Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022272419> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2022272419 endingPage "406" @default.
- W2022272419 startingPage "405" @default.
- W2022272419 abstract "A recent article [Acharya and Nagarajaram, 2012] describes a new method called Hansa, which classifies missense mutations into neutral and deleterious categories. However, the authors do not provide sufficient details about their algorithm, which results in concerns about the appropriateness and application of statistical methods that compare Hansa with existing algorithms. Acharya and Nagarajaram (2012) state their method outperforms other known methods such as PolyPhen-2 [Adzhubei et al., 2010] and SIFT [Ng and Henikoff, 2006] by comparing the receiver operating characteristics (ROCs) of Hansa to the ROCs of the other algorithms. In their Table 2, a direct comparison of the ROCs is made by employing a benchmark dataset called HumVar originally described in Capriotti et al. (2006) and employed in Adzhubei et al. (2010), which compares the true positive rates (TPR) between algorithms for a fixed false positive rate (FPR). ROCs require a probability or continuous score associated with each prediction to compute TPRs and FPRs as the discrimination threshold is varied [Pepe, 2003]. For example, the ROC of PolyPhen-2 was based on the naïve Bayes probability provided by the algorithm itself and the ROC of SIFT was based on the SIFT score [Adzhubei et al., 2010]. As described in the publication, Hansa is based on support vector machine (SVM) method, which uses a set of 10 discriminatory features to classify missense mutations as neutral or deleterious. SVMs are nonprobabilistic classifiers [Hastie et al., 2009], and consistently, there is no probability or continuous score associated with each prediction, and thus, an ROC analysis does not seem obviously feasible for this algorithm. In the publication, there is no mention of what continuous score or probability was used to calculate the TPRs of Hansa for a fixed FPR. Therefore, it is unclear how they might attain various TPRs for a given FPR because there is no varying threshold defined. We compared Hansa with other algorithms using the independent data set of n = 267 mutations from cancer-associated genes [Hicks et al., 2011], which Acharya and Nagarajaram (2012) use as a validation data set to the HumVar data that Hansa was trained on. We originally used this well-characterized data to compare the TPRs and FPRs of several algorithms using their native protein sequence alignments and to evaluate the impact of the predictions when the algorithms were supplied other alignments. Because Hansa does not provide a probability or continuous score associated with each prediction, we could not provide the ROC curves and could only calculate the TPRs and FPRs for each algorithm. Hansa seems to perform comparably to the other algorithms (Fig. 1). In addition, as a way to compare the improvement of TPR in Hansa over the other algorithms, the authors inappropriately performed a paired t-test. Because they are comparing proportions, it would be preferable to use for example a test for a difference in proportions with a correction for multiple testing. Furthermore, to measure the performance of the SVM, the authors state they use a n-fold cross-validation and leave-one-out cross-validation (LOOCV) to “assess the generalization and stability” of their method. Unfortunately, they do not report the parameter estimates of the SVM and do not report the n-fold cross-validation error. They only report a LOOCV error, which makes it difficult to assess the validity of this analysis." @default.
- W2022272419 created "2016-06-24" @default.
- W2022272419 creator A5028505800 @default.
- W2022272419 creator A5028969570 @default.
- W2022272419 creator A5071222148 @default.
- W2022272419 date "2012-12-31" @default.
- W2022272419 modified "2023-09-23" @default.
- W2022272419 title "Statistical Analysis of Missense Mutation Classifiers" @default.
- W2022272419 cites W1883557187 @default.
- W2022272419 cites W2039878336 @default.
- W2022272419 cites W2059145105 @default.
- W2022272419 cites W2087588809 @default.
- W2022272419 cites W2092275890 @default.
- W2022272419 cites W2099564671 @default.
- W2022272419 cites W2111326065 @default.
- W2022272419 cites W2127981150 @default.
- W2022272419 cites W2164004777 @default.
- W2022272419 doi "https://doi.org/10.1002/humu.22243" @default.
- W2022272419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23086893" @default.
- W2022272419 hasPublicationYear "2012" @default.
- W2022272419 type Work @default.
- W2022272419 sameAs 2022272419 @default.
- W2022272419 citedByCount "4" @default.
- W2022272419 countsByYear W20222724192015 @default.
- W2022272419 countsByYear W20222724192017 @default.
- W2022272419 countsByYear W20222724192019 @default.
- W2022272419 countsByYear W20222724192021 @default.
- W2022272419 crossrefType "journal-article" @default.
- W2022272419 hasAuthorship W2022272419A5028505800 @default.
- W2022272419 hasAuthorship W2022272419A5028969570 @default.
- W2022272419 hasAuthorship W2022272419A5071222148 @default.
- W2022272419 hasBestOaLocation W20222724191 @default.
- W2022272419 hasConcept C104317684 @default.
- W2022272419 hasConcept C105795698 @default.
- W2022272419 hasConcept C107673813 @default.
- W2022272419 hasConcept C11413529 @default.
- W2022272419 hasConcept C119857082 @default.
- W2022272419 hasConcept C12267149 @default.
- W2022272419 hasConcept C13280743 @default.
- W2022272419 hasConcept C153180895 @default.
- W2022272419 hasConcept C154945302 @default.
- W2022272419 hasConcept C185798385 @default.
- W2022272419 hasConcept C205649164 @default.
- W2022272419 hasConcept C207201462 @default.
- W2022272419 hasConcept C33923547 @default.
- W2022272419 hasConcept C41008148 @default.
- W2022272419 hasConcept C501734568 @default.
- W2022272419 hasConcept C52001869 @default.
- W2022272419 hasConcept C52622490 @default.
- W2022272419 hasConcept C54355233 @default.
- W2022272419 hasConcept C58471807 @default.
- W2022272419 hasConcept C61265191 @default.
- W2022272419 hasConcept C75563809 @default.
- W2022272419 hasConcept C86803240 @default.
- W2022272419 hasConcept C98638677 @default.
- W2022272419 hasConceptScore W2022272419C104317684 @default.
- W2022272419 hasConceptScore W2022272419C105795698 @default.
- W2022272419 hasConceptScore W2022272419C107673813 @default.
- W2022272419 hasConceptScore W2022272419C11413529 @default.
- W2022272419 hasConceptScore W2022272419C119857082 @default.
- W2022272419 hasConceptScore W2022272419C12267149 @default.
- W2022272419 hasConceptScore W2022272419C13280743 @default.
- W2022272419 hasConceptScore W2022272419C153180895 @default.
- W2022272419 hasConceptScore W2022272419C154945302 @default.
- W2022272419 hasConceptScore W2022272419C185798385 @default.
- W2022272419 hasConceptScore W2022272419C205649164 @default.
- W2022272419 hasConceptScore W2022272419C207201462 @default.
- W2022272419 hasConceptScore W2022272419C33923547 @default.
- W2022272419 hasConceptScore W2022272419C41008148 @default.
- W2022272419 hasConceptScore W2022272419C501734568 @default.
- W2022272419 hasConceptScore W2022272419C52001869 @default.
- W2022272419 hasConceptScore W2022272419C52622490 @default.
- W2022272419 hasConceptScore W2022272419C54355233 @default.
- W2022272419 hasConceptScore W2022272419C58471807 @default.
- W2022272419 hasConceptScore W2022272419C61265191 @default.
- W2022272419 hasConceptScore W2022272419C75563809 @default.
- W2022272419 hasConceptScore W2022272419C86803240 @default.
- W2022272419 hasConceptScore W2022272419C98638677 @default.
- W2022272419 hasIssue "2" @default.
- W2022272419 hasLocation W20222724191 @default.
- W2022272419 hasLocation W20222724192 @default.
- W2022272419 hasOpenAccess W2022272419 @default.
- W2022272419 hasPrimaryLocation W20222724191 @default.
- W2022272419 hasRelatedWork W2183536701 @default.
- W2022272419 hasRelatedWork W2539163683 @default.
- W2022272419 hasRelatedWork W2595988085 @default.
- W2022272419 hasRelatedWork W2979979539 @default.
- W2022272419 hasRelatedWork W3014664599 @default.
- W2022272419 hasRelatedWork W3127425528 @default.
- W2022272419 hasRelatedWork W3174451172 @default.
- W2022272419 hasRelatedWork W4313549251 @default.
- W2022272419 hasRelatedWork W4327772909 @default.
- W2022272419 hasRelatedWork W4364301914 @default.
- W2022272419 hasVolume "34" @default.
- W2022272419 isParatext "false" @default.
- W2022272419 isRetracted "false" @default.
- W2022272419 magId "2022272419" @default.
- W2022272419 workType "article" @default.