Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022275452> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2022275452 abstract "Introduction Physical Problems in Engineering Numerical Techniques: Practical Solution Tools Why S-FEM? The Idea of S-FEM Key Techniques Used in S-FEM S-FEM Models and Properties Some Historical Notes Outline of the Book Basic Equations for Solid Mechanics Equilibrium Equation: In Stresses Constitutive Equation Compatibility Equation Equilibrium Equation: In Displacements Equations in Matrix Form Boundary Conditions Some Standard Default Conventions and Notations The Finite Element Method General Procedure of FEM Proper Spaces Weak Formulation and Properties of the Solution Domain Discretization: Creation of Finite-Dimensional Space Creation of Shape Functions Displacement Function Creation Strain Evaluation Formulation of the Discretized System of Equations FEM Solution: Existence, Uniqueness, Error, and Convergence Some Other Properties of the FEM Solution Linear Triangular Element (T3) Four-Node Quadrilateral Element (Q4) Four-Node Tetrahedral Element (T4) Eight-Node Hexahedral Element (H8) Gauss Integration Fundamental Theories for S-FEM General Procedure for S-FEM Models Domain Discretization with Polygonal Elements Creating a Displacement Field: Shape Function Construction Evaluation of the Compatible Strain Field Modify/Construct the Strain Field Minimum Number of Smoothing Domains: Essential to Stability Smoothed Galerkin Weak Form Discretized Linear Algebraic System of Equations Solve the Algebraic System of Equations Error Assessment in S-FEM and FEM Models Implementation Procedure for S-FEM Models General Properties of S-FEM Models Cell-Based Smoothed FEM Cell-Based Smoothing Domain Discretized System of Equations Shape Function Evaluation Some Properties of CS-FEM Stability of CS-FEM and nCS-FEM Standard Patch Test: Accuracy Selective CS-FEM: Volumetric Locking Free Numerical Examples Node-Based Smoothed FEM Introduction Creation of Node-Based Smoothing Domains Formulation of NS-FEM Evaluation of Shape Function Values Properties of NS-FEM An Adaptive NS-FEM Using Triangular Elements Numerical Examples Edge-Based Smoothed FEM Introduction Creation of Edge-Based Smoothing Domains Formulation of the ES-FEM Evaluation of the Shape Function Values in the ES-FEM A Smoothing-Domain-Based Selective ES/NS-FEM Properties of the ES-FEM Numerical Examples Face-Based Smoothed FEM Introduction Face-Based Smoothing Domain Creation Formulation of FS-FEM-T4 A Smoothing-Domain-Based Selective FS/NS-FEM-T4 Model Stability, Accuracy, and Mesh Sensitivity Numerical Examples The alphaFEM Introduction Idea of alphaFEM-T3 and alphaFEM-T4 alphaFEM-T3 and alphaFEM-T4 for Nonlinear Problems Implementation and Patch Tests Numerical Examples S-FEM for Fracture Mechanics Introduction Singular Stress Field Creation at the Crack-Tip Possible sS-FEM Methods sNS-FEM Models sES-FEM Models Stiffness Matrix Evaluation J-Integral and SIF Evaluation Interaction Integral Method for Mixed Mode Numerical Examples Solved Using sES-FEM-T3 Numerical Examples Solved Using sNS-FEM-T3 S-FEM for Viscoelastoplasticity Introduction Strong Formulation for Viscoelastoplasticity FEM for Viscoelastoplasticity: A Dual Formulation S-FEM for Viscoelastoplasticity: A Dual Formulation A Posteriori Error Estimation Numerical Examples ES-FEM for Plates Introduction Weak Form for the Reissner-Mindlin Plate FEM Formulation for the Reissner-Mindlin Plate ES-FEM-DSG3 for the Reissner-Mindlin Plate Numerical Examples: Patch Test Numerical Examples: Static Analysis Numerical Examples: Free Vibration of Plates Numerical Examples: Buckling of Plates S-FEM for Piezoelectric Structures Introduction Galerkin Weak Form for Piezoelectrics Finite Element Formulation for the Piezoelectric Problem S-FEM for the Piezoelectric Problem Numerical Results S-FEM for Heat Transfer Problems Introduction Strong-Form Equations for Heat Transfer Problems Boundary Conditions Weak Forms for Heat Transfer Problems FEM Equations S-FEM Equations Evaluation of the Smoothed Gradient Matrix Numerical Example Bioheat Transfer Problems S-FEM for Acoustics Problems Introduction Mathematical Model of Acoustics Problems Weak Forms for Acoustics Problems FEM Equations S-FEM Equations Error in a Numerical Model Numerical Examples Index References appear at the end of each chapter." @default.
- W2022275452 created "2016-06-24" @default.
- W2022275452 creator A5051880363 @default.
- W2022275452 creator A5053998535 @default.
- W2022275452 date "2016-04-19" @default.
- W2022275452 modified "2023-10-14" @default.
- W2022275452 title "Smoothed Finite Element Methods" @default.
- W2022275452 doi "https://doi.org/10.1201/ebk1439820278" @default.
- W2022275452 hasPublicationYear "2016" @default.
- W2022275452 type Work @default.
- W2022275452 sameAs 2022275452 @default.
- W2022275452 citedByCount "223" @default.
- W2022275452 countsByYear W20222754522012 @default.
- W2022275452 countsByYear W20222754522013 @default.
- W2022275452 countsByYear W20222754522014 @default.
- W2022275452 countsByYear W20222754522015 @default.
- W2022275452 countsByYear W20222754522016 @default.
- W2022275452 countsByYear W20222754522017 @default.
- W2022275452 countsByYear W20222754522018 @default.
- W2022275452 countsByYear W20222754522019 @default.
- W2022275452 countsByYear W20222754522020 @default.
- W2022275452 countsByYear W20222754522021 @default.
- W2022275452 countsByYear W20222754522022 @default.
- W2022275452 countsByYear W20222754522023 @default.
- W2022275452 crossrefType "monograph" @default.
- W2022275452 hasAuthorship W2022275452A5051880363 @default.
- W2022275452 hasAuthorship W2022275452A5053998535 @default.
- W2022275452 hasConcept C127413603 @default.
- W2022275452 hasConcept C135628077 @default.
- W2022275452 hasConcept C177605945 @default.
- W2022275452 hasConcept C33923547 @default.
- W2022275452 hasConcept C41008148 @default.
- W2022275452 hasConcept C52890695 @default.
- W2022275452 hasConcept C63632240 @default.
- W2022275452 hasConcept C66938386 @default.
- W2022275452 hasConceptScore W2022275452C127413603 @default.
- W2022275452 hasConceptScore W2022275452C135628077 @default.
- W2022275452 hasConceptScore W2022275452C177605945 @default.
- W2022275452 hasConceptScore W2022275452C33923547 @default.
- W2022275452 hasConceptScore W2022275452C41008148 @default.
- W2022275452 hasConceptScore W2022275452C52890695 @default.
- W2022275452 hasConceptScore W2022275452C63632240 @default.
- W2022275452 hasConceptScore W2022275452C66938386 @default.
- W2022275452 hasLocation W20222754521 @default.
- W2022275452 hasOpenAccess W2022275452 @default.
- W2022275452 hasPrimaryLocation W20222754521 @default.
- W2022275452 hasRelatedWork W112999320 @default.
- W2022275452 hasRelatedWork W1726655818 @default.
- W2022275452 hasRelatedWork W1873101094 @default.
- W2022275452 hasRelatedWork W1989696490 @default.
- W2022275452 hasRelatedWork W1997877319 @default.
- W2022275452 hasRelatedWork W2069701013 @default.
- W2022275452 hasRelatedWork W2078790749 @default.
- W2022275452 hasRelatedWork W2367880982 @default.
- W2022275452 hasRelatedWork W2948836745 @default.
- W2022275452 hasRelatedWork W4297900412 @default.
- W2022275452 isParatext "false" @default.
- W2022275452 isRetracted "false" @default.
- W2022275452 magId "2022275452" @default.
- W2022275452 workType "book" @default.