Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022275887> ?p ?o ?g. }
- W2022275887 abstract "Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression splines and trees (including survival trees) have challenged classic multivariable models such as the multiple logistic function, the proportional hazards life table Cox model (Cox), the Poisson’s model, and the Weibull’s life table model to perform multivariable predictions. However, only artificial neural networks (NN) have become popular in medical applications. We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM) by 18 risk factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related physical activity; cigarette smoking; body mass index (linear and quadratic terms); arm circumference; mean blood pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases, cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study, made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by: a) forcing all factors; b) a forward-; and c) a backward-stepwise procedure. Observed cases of deaths and of survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by C-statistics (ROC analysis) with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were extremely high by all methods (ROCs > 0.810) but there was no clear-cut superiority of any model to predict 45-ACM. The highest ROCs (> 0.838) were observed by NN. There were inter-model variations to select predictive covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors), family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced NN. Forced expiratory volume and arm circumference (two protectors), were not selected by stepwise NN but were so by the Cox models. There were similar global accuracies of NN versus Cox models to predict 45-ACM. NN detected specific predictive covariates having a common thread with physical fitness as related to job physical activity such as arm circumference and forced expiratory volume. Future attention should be concentrated on why NN versus Cox models detect different predictors." @default.
- W2022275887 created "2016-06-24" @default.
- W2022275887 creator A5055380285 @default.
- W2022275887 creator A5079434589 @default.
- W2022275887 date "2012-07-23" @default.
- W2022275887 modified "2023-10-06" @default.
- W2022275887 title "Artificial neural networks versus proportional hazards Cox models to predict 45-year all-cause mortality in the Italian Rural Areas of the Seven Countries Study" @default.
- W2022275887 cites W1938298886 @default.
- W2022275887 cites W1967900900 @default.
- W2022275887 cites W1968205045 @default.
- W2022275887 cites W1989855860 @default.
- W2022275887 cites W1994899858 @default.
- W2022275887 cites W2008790842 @default.
- W2022275887 cites W2013856227 @default.
- W2022275887 cites W2014655665 @default.
- W2022275887 cites W2020246210 @default.
- W2022275887 cites W2023557964 @default.
- W2022275887 cites W2026491948 @default.
- W2022275887 cites W2042540623 @default.
- W2022275887 cites W2069292763 @default.
- W2022275887 cites W2071379517 @default.
- W2022275887 cites W2078618444 @default.
- W2022275887 cites W2090077439 @default.
- W2022275887 cites W2091886411 @default.
- W2022275887 cites W2102150307 @default.
- W2022275887 cites W2102201073 @default.
- W2022275887 cites W2102546516 @default.
- W2022275887 cites W2103698882 @default.
- W2022275887 cites W2104960492 @default.
- W2022275887 cites W2117573697 @default.
- W2022275887 cites W2121394390 @default.
- W2022275887 cites W2124537635 @default.
- W2022275887 cites W2125443492 @default.
- W2022275887 cites W2127425427 @default.
- W2022275887 cites W2137983211 @default.
- W2022275887 cites W2141895973 @default.
- W2022275887 cites W2157825442 @default.
- W2022275887 cites W2159212370 @default.
- W2022275887 cites W2161349318 @default.
- W2022275887 cites W2317739826 @default.
- W2022275887 cites W2328176404 @default.
- W2022275887 cites W40102442 @default.
- W2022275887 cites W4205151433 @default.
- W2022275887 cites W4212813430 @default.
- W2022275887 cites W4234181085 @default.
- W2022275887 cites W4249028950 @default.
- W2022275887 cites W4299689471 @default.
- W2022275887 cites W4376595336 @default.
- W2022275887 cites W2110471281 @default.
- W2022275887 doi "https://doi.org/10.1186/1471-2288-12-100" @default.
- W2022275887 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3549727" @default.
- W2022275887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22824187" @default.
- W2022275887 hasPublicationYear "2012" @default.
- W2022275887 type Work @default.
- W2022275887 sameAs 2022275887 @default.
- W2022275887 citedByCount "15" @default.
- W2022275887 countsByYear W20222758872014 @default.
- W2022275887 countsByYear W20222758872015 @default.
- W2022275887 countsByYear W20222758872016 @default.
- W2022275887 countsByYear W20222758872017 @default.
- W2022275887 countsByYear W20222758872018 @default.
- W2022275887 countsByYear W20222758872019 @default.
- W2022275887 countsByYear W20222758872020 @default.
- W2022275887 crossrefType "journal-article" @default.
- W2022275887 hasAuthorship W2022275887A5055380285 @default.
- W2022275887 hasAuthorship W2022275887A5079434589 @default.
- W2022275887 hasBestOaLocation W20222758871 @default.
- W2022275887 hasConcept C10515644 @default.
- W2022275887 hasConcept C105795698 @default.
- W2022275887 hasConcept C126322002 @default.
- W2022275887 hasConcept C144024400 @default.
- W2022275887 hasConcept C149923435 @default.
- W2022275887 hasConcept C170964787 @default.
- W2022275887 hasConcept C2780221984 @default.
- W2022275887 hasConcept C2908647359 @default.
- W2022275887 hasConcept C33923547 @default.
- W2022275887 hasConcept C50382708 @default.
- W2022275887 hasConcept C71924100 @default.
- W2022275887 hasConcept C73269764 @default.
- W2022275887 hasConcept C99454951 @default.
- W2022275887 hasConceptScore W2022275887C10515644 @default.
- W2022275887 hasConceptScore W2022275887C105795698 @default.
- W2022275887 hasConceptScore W2022275887C126322002 @default.
- W2022275887 hasConceptScore W2022275887C144024400 @default.
- W2022275887 hasConceptScore W2022275887C149923435 @default.
- W2022275887 hasConceptScore W2022275887C170964787 @default.
- W2022275887 hasConceptScore W2022275887C2780221984 @default.
- W2022275887 hasConceptScore W2022275887C2908647359 @default.
- W2022275887 hasConceptScore W2022275887C33923547 @default.
- W2022275887 hasConceptScore W2022275887C50382708 @default.
- W2022275887 hasConceptScore W2022275887C71924100 @default.
- W2022275887 hasConceptScore W2022275887C73269764 @default.
- W2022275887 hasConceptScore W2022275887C99454951 @default.
- W2022275887 hasIssue "1" @default.
- W2022275887 hasLocation W20222758871 @default.
- W2022275887 hasLocation W20222758872 @default.
- W2022275887 hasLocation W20222758873 @default.
- W2022275887 hasLocation W20222758874 @default.
- W2022275887 hasOpenAccess W2022275887 @default.
- W2022275887 hasPrimaryLocation W20222758871 @default.