Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022280107> ?p ?o ?g. }
- W2022280107 endingPage "033502" @default.
- W2022280107 startingPage "033502" @default.
- W2022280107 abstract "Purpose: Benign computed tomography (CT) changes due to radiation induced lung injury (RILI) are common following stereotactic ablative radiotherapy (SABR) and can be difficult to differentiate from tumor recurrence. The authors measured the ability of CT image texture analysis, compared to more traditional measures of response, to predict eventual cancer recurrence based on CT images acquired within 5 months of treatment. Methods: A total of 24 lesions from 22 patients treated with SABR were selected for this study: 13 with moderate to severe benign RILI, and 11 with recurrence. Three-dimensional (3D) consolidative and ground-glass opacity (GGO) changes were manually delineated on all follow-up CT scans. Two size measures of the consolidation regions (longest axial diameter and 3D volume) and nine appearance features of the GGO were calculated: 2 first-order features [mean density and standard deviation of density (first-order texture)], and 7 second-order texture features [energy, entropy, correlation, inverse difference moment (IDM), inertia, cluster shade, and cluster prominence]. For comparison, the corresponding response evaluation criteria in solid tumors measures were also taken for the consolidation regions. Prediction accuracy was determined using the area under the receiver operating characteristic curve (AUC) and two-fold cross validation (CV). Results: For this analysis, 46 diagnostic CT scans scheduled for approximately 3 and 6 months post-treatment were binned based on their recorded scan dates into 2–5 month and 5–8 month follow-up time ranges. At 2–5 months post-treatment, first-order texture, energy, and entropy provided AUCs of 0.79–0.81 using a linear classifier. On two-fold CV, first-order texture yielded 73% accuracy versus 76%–77% with the second-order features. The size measures of the consolidative region, longest axial diameter and 3D volume, gave two-fold CV accuracies of 60% and 57%, and AUCs of 0.72 and 0.65, respectively. Conclusions: Texture measures of the GGO appearance following SABR demonstrated the ability to predict recurrence in individual patients within 5 months of SABR treatment. Appearance changes were also shown to be more accurately predictive of recurrence, as compared to size measures within the same time period. With further validation, these results could form the substrate for a clinically useful computer-aided diagnosis tool which could provide earlier salvage of patients with recurrence." @default.
- W2022280107 created "2016-06-24" @default.
- W2022280107 creator A5008861959 @default.
- W2022280107 creator A5041767978 @default.
- W2022280107 creator A5047863717 @default.
- W2022280107 creator A5077453712 @default.
- W2022280107 creator A5090288280 @default.
- W2022280107 date "2014-03-03" @default.
- W2022280107 modified "2023-10-16" @default.
- W2022280107 title "Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer" @default.
- W2022280107 cites W1968433117 @default.
- W2022280107 cites W1969730637 @default.
- W2022280107 cites W1970544808 @default.
- W2022280107 cites W1972613904 @default.
- W2022280107 cites W1981654793 @default.
- W2022280107 cites W1984093344 @default.
- W2022280107 cites W1990266033 @default.
- W2022280107 cites W1991937771 @default.
- W2022280107 cites W2004486060 @default.
- W2022280107 cites W2019607817 @default.
- W2022280107 cites W2041112729 @default.
- W2022280107 cites W2042196942 @default.
- W2022280107 cites W2044465660 @default.
- W2022280107 cites W2050496713 @default.
- W2022280107 cites W2054557181 @default.
- W2022280107 cites W2056521144 @default.
- W2022280107 cites W2059432853 @default.
- W2022280107 cites W2061116150 @default.
- W2022280107 cites W2089413503 @default.
- W2022280107 cites W2094422209 @default.
- W2022280107 cites W2096813265 @default.
- W2022280107 cites W2102634410 @default.
- W2022280107 cites W2110290656 @default.
- W2022280107 cites W2112063803 @default.
- W2022280107 cites W2120587770 @default.
- W2022280107 cites W2127890285 @default.
- W2022280107 cites W2149250475 @default.
- W2022280107 cites W2151020778 @default.
- W2022280107 cites W2157329862 @default.
- W2022280107 cites W2157569200 @default.
- W2022280107 cites W2159091878 @default.
- W2022280107 cites W2163211182 @default.
- W2022280107 cites W2165574206 @default.
- W2022280107 cites W2166065216 @default.
- W2022280107 cites W2503135644 @default.
- W2022280107 cites W4249552602 @default.
- W2022280107 doi "https://doi.org/10.1118/1.4866219" @default.
- W2022280107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24593744" @default.
- W2022280107 hasPublicationYear "2014" @default.
- W2022280107 type Work @default.
- W2022280107 sameAs 2022280107 @default.
- W2022280107 citedByCount "94" @default.
- W2022280107 countsByYear W20222801072014 @default.
- W2022280107 countsByYear W20222801072015 @default.
- W2022280107 countsByYear W20222801072016 @default.
- W2022280107 countsByYear W20222801072017 @default.
- W2022280107 countsByYear W20222801072018 @default.
- W2022280107 countsByYear W20222801072019 @default.
- W2022280107 countsByYear W20222801072020 @default.
- W2022280107 countsByYear W20222801072021 @default.
- W2022280107 countsByYear W20222801072022 @default.
- W2022280107 countsByYear W20222801072023 @default.
- W2022280107 crossrefType "journal-article" @default.
- W2022280107 hasAuthorship W2022280107A5008861959 @default.
- W2022280107 hasAuthorship W2022280107A5041767978 @default.
- W2022280107 hasAuthorship W2022280107A5047863717 @default.
- W2022280107 hasAuthorship W2022280107A5077453712 @default.
- W2022280107 hasAuthorship W2022280107A5090288280 @default.
- W2022280107 hasBestOaLocation W20222801071 @default.
- W2022280107 hasConcept C126322002 @default.
- W2022280107 hasConcept C126838900 @default.
- W2022280107 hasConcept C149782125 @default.
- W2022280107 hasConcept C163716698 @default.
- W2022280107 hasConcept C187625094 @default.
- W2022280107 hasConcept C2989005 @default.
- W2022280107 hasConcept C33923547 @default.
- W2022280107 hasConcept C509974204 @default.
- W2022280107 hasConcept C58471807 @default.
- W2022280107 hasConcept C71924100 @default.
- W2022280107 hasConcept C85393063 @default.
- W2022280107 hasConcept C91602232 @default.
- W2022280107 hasConceptScore W2022280107C126322002 @default.
- W2022280107 hasConceptScore W2022280107C126838900 @default.
- W2022280107 hasConceptScore W2022280107C149782125 @default.
- W2022280107 hasConceptScore W2022280107C163716698 @default.
- W2022280107 hasConceptScore W2022280107C187625094 @default.
- W2022280107 hasConceptScore W2022280107C2989005 @default.
- W2022280107 hasConceptScore W2022280107C33923547 @default.
- W2022280107 hasConceptScore W2022280107C509974204 @default.
- W2022280107 hasConceptScore W2022280107C58471807 @default.
- W2022280107 hasConceptScore W2022280107C71924100 @default.
- W2022280107 hasConceptScore W2022280107C85393063 @default.
- W2022280107 hasConceptScore W2022280107C91602232 @default.
- W2022280107 hasIssue "3" @default.
- W2022280107 hasLocation W20222801071 @default.
- W2022280107 hasLocation W20222801072 @default.
- W2022280107 hasOpenAccess W2022280107 @default.
- W2022280107 hasPrimaryLocation W20222801071 @default.