Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022284665> ?p ?o ?g. }
- W2022284665 endingPage "282" @default.
- W2022284665 startingPage "275" @default.
- W2022284665 abstract "Due to the complexity of software products and development processes, software reliability models need to possess the ability of dealing with multiple parameters. Also in order to adapt to the continually refreshed data, they should provide flexibility in model construction in terms of information updating. Existing software reliability models are not flexible in this context. The main reason for this is that there are many static assumptions associated with the models. Bayesian network is a powerful tool for solving this problem, as it exhibits strong ability to adapt in problems involving complex variant factors. In this paper, a software prediction model based on Markov Bayesian networks is developed, and a method to solve the network model is proposed. The use of our model is illustrated with an example." @default.
- W2022284665 created "2016-06-24" @default.
- W2022284665 creator A5000310523 @default.
- W2022284665 creator A5015149203 @default.
- W2022284665 creator A5070592593 @default.
- W2022284665 creator A5084051302 @default.
- W2022284665 date "2005-02-01" @default.
- W2022284665 modified "2023-10-01" @default.
- W2022284665 title "Software failure prediction based on a Markov Bayesian network model" @default.
- W2022284665 cites W1514100826 @default.
- W2022284665 cites W1967663711 @default.
- W2022284665 cites W1997747134 @default.
- W2022284665 cites W2005187303 @default.
- W2022284665 cites W2034734642 @default.
- W2022284665 cites W2041041037 @default.
- W2022284665 cites W2041349827 @default.
- W2022284665 cites W2049571606 @default.
- W2022284665 cites W2056722806 @default.
- W2022284665 cites W2062734721 @default.
- W2022284665 cites W2110068396 @default.
- W2022284665 cites W2127366088 @default.
- W2022284665 cites W2129019011 @default.
- W2022284665 cites W2132988567 @default.
- W2022284665 cites W2136147086 @default.
- W2022284665 cites W2136988154 @default.
- W2022284665 cites W2142845742 @default.
- W2022284665 cites W2143075689 @default.
- W2022284665 cites W2143559622 @default.
- W2022284665 cites W2153513325 @default.
- W2022284665 cites W2155911755 @default.
- W2022284665 cites W2171242934 @default.
- W2022284665 cites W2631772178 @default.
- W2022284665 cites W4239236995 @default.
- W2022284665 doi "https://doi.org/10.1016/j.jss.2004.02.028" @default.
- W2022284665 hasPublicationYear "2005" @default.
- W2022284665 type Work @default.
- W2022284665 sameAs 2022284665 @default.
- W2022284665 citedByCount "75" @default.
- W2022284665 countsByYear W20222846652012 @default.
- W2022284665 countsByYear W20222846652013 @default.
- W2022284665 countsByYear W20222846652014 @default.
- W2022284665 countsByYear W20222846652015 @default.
- W2022284665 countsByYear W20222846652016 @default.
- W2022284665 countsByYear W20222846652017 @default.
- W2022284665 countsByYear W20222846652018 @default.
- W2022284665 countsByYear W20222846652019 @default.
- W2022284665 countsByYear W20222846652021 @default.
- W2022284665 countsByYear W20222846652022 @default.
- W2022284665 crossrefType "journal-article" @default.
- W2022284665 hasAuthorship W2022284665A5000310523 @default.
- W2022284665 hasAuthorship W2022284665A5015149203 @default.
- W2022284665 hasAuthorship W2022284665A5070592593 @default.
- W2022284665 hasAuthorship W2022284665A5084051302 @default.
- W2022284665 hasConcept C105795698 @default.
- W2022284665 hasConcept C107673813 @default.
- W2022284665 hasConcept C117447612 @default.
- W2022284665 hasConcept C119857082 @default.
- W2022284665 hasConcept C121332964 @default.
- W2022284665 hasConcept C124101348 @default.
- W2022284665 hasConcept C127413603 @default.
- W2022284665 hasConcept C151730666 @default.
- W2022284665 hasConcept C154945302 @default.
- W2022284665 hasConcept C160234255 @default.
- W2022284665 hasConcept C163258240 @default.
- W2022284665 hasConcept C163836022 @default.
- W2022284665 hasConcept C199360897 @default.
- W2022284665 hasConcept C200601418 @default.
- W2022284665 hasConcept C2777904410 @default.
- W2022284665 hasConcept C2779343474 @default.
- W2022284665 hasConcept C2780598303 @default.
- W2022284665 hasConcept C33724603 @default.
- W2022284665 hasConcept C33923547 @default.
- W2022284665 hasConcept C41008148 @default.
- W2022284665 hasConcept C43214815 @default.
- W2022284665 hasConcept C529173508 @default.
- W2022284665 hasConcept C62520636 @default.
- W2022284665 hasConcept C71983512 @default.
- W2022284665 hasConcept C82142266 @default.
- W2022284665 hasConcept C86803240 @default.
- W2022284665 hasConcept C98763669 @default.
- W2022284665 hasConceptScore W2022284665C105795698 @default.
- W2022284665 hasConceptScore W2022284665C107673813 @default.
- W2022284665 hasConceptScore W2022284665C117447612 @default.
- W2022284665 hasConceptScore W2022284665C119857082 @default.
- W2022284665 hasConceptScore W2022284665C121332964 @default.
- W2022284665 hasConceptScore W2022284665C124101348 @default.
- W2022284665 hasConceptScore W2022284665C127413603 @default.
- W2022284665 hasConceptScore W2022284665C151730666 @default.
- W2022284665 hasConceptScore W2022284665C154945302 @default.
- W2022284665 hasConceptScore W2022284665C160234255 @default.
- W2022284665 hasConceptScore W2022284665C163258240 @default.
- W2022284665 hasConceptScore W2022284665C163836022 @default.
- W2022284665 hasConceptScore W2022284665C199360897 @default.
- W2022284665 hasConceptScore W2022284665C200601418 @default.
- W2022284665 hasConceptScore W2022284665C2777904410 @default.
- W2022284665 hasConceptScore W2022284665C2779343474 @default.
- W2022284665 hasConceptScore W2022284665C2780598303 @default.
- W2022284665 hasConceptScore W2022284665C33724603 @default.